Mercurial > hg > octave-lyh
view scripts/plot/slice.m @ 7184:2f915d6cac3d
[project @ 2007-11-26 18:45:02 by jwe]
author | jwe |
---|---|
date | Mon, 26 Nov 2007 18:45:02 +0000 |
parents | c0be321eb472 |
children | d65670971cbc |
line wrap: on
line source
## Copyright (C) 2007 Kai Habel, David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz}) ## @deftypefnx {Function File} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz}) ## @deftypefnx {Function File} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi}) ## @deftypefnx {Function File} {@var{h} =} slice (@dots{}) ## @deftypefnx {Function File} {@var{h} =} slice (@dots{}, @var{method}) ## Plot slices of 3D data/scalar fields. Each element of the 3-dimensional ## array @var{v} represents a scalar value at a location given by the ## parameters @var{x}, @var{y}, and @var{z}. The parameters @var{x}, ## @var{x}, and @var{z} are either 3-dimensional arrays of the same size ## as the array @var{v} in the "meshgrid" format or vectors. The ## parameters @var{xi}, etc respect a similar format to @var{x}, etc, ## and they represent the points at which the array @var{vi} is ## interpolated using interp3. The vectors @var{sx}, @var{sy}, and ## @var{sz} contain points of orthogonal slices of the respective axes. ## ## If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be ## @code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and ## @code{z = 1:size (@var{v}, 3)}. ## ## @var{Method} is one of: ## ## @table @code ## @item "nearest" ## Return the nearest neighbour. ## @item "linear" ## Linear interpolation from nearest neighbours. ## @item "cubic" ## Cubic interpolation from four nearest neighbours (not implemented yet). ## @item "spline" ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is @code{"linear"}. ## The optional return value @var{h} is a vector of handles to the ## surface graphic objects. ## ## Examples: ## @example ## [x, y, z] = meshgrid (linspace (-8, 8, 32)); ## v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2)); ## slice (x, y, z, v, [], 0, []); ## [xi, yi] = meshgrid (linspace (-7, 7)); ## zi = xi + yi; ## slice (x, y, z, v, xi, yi, zi); ## @end example ## @seealso{interp3, surface, pcolor} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> function h = slice (varargin) method = "linear"; extrapval = NA; nargs = nargin; if (ischar (varargin{end})) method = varargin{end}; nargs -= 1; endif if (nargs == 4) v = varargin{1}; if (ndims (v) != 3) error ("slice: expect 3-dimensional array of values"); endif [nx, ny, nz] = size (v); [x, y, z] = meshgrid (1:nx, 1:ny, 1:nz); sx = varargin{2}; sy = varargin{3}; sz = varargin{4}; elseif (nargs == 7) v = varargin{4}; if (ndims (v) != 3) error ("slice: expect 3-dimensional array of values"); endif x = varargin{1}; y = varargin{2}; z = varargin{3}; if (all ([isvector(x), isvector(y), isvector(z)])) [x, y, z] = meshgrid (x, y, z); elseif (ndims (x) == 3 && size_equal (x, y) && size_equal (x, z)) ## Do nothing. else error ("slice: X, Y, Z size mismatch") endif sx = varargin{5}; sy = varargin{6}; sz = varargin{7}; else print_usage (); endif if (any ([isvector(sx), isvector(sy), isvector(sz)])) have_sval = true; elseif (ndims(sx) == 2 && size_equal (sx, sy) && size_equal (sx, sz)) have_sval = false; else error ("slice: dimensional mismatch for (XI, YI, ZI) or (SX, SY, SZ)"); endif newplot (); ax = gca (); sidx = 1; maxv = max (v(:)); minv = min (v(:)); set (ax, "clim", [minv, maxv]); if (have_sval) ns = length (sx) + length (sy) + length (sz); hs = zeros(ns,1); [ny, nx, nz] = size (v); if (length(sz) > 0) for i = 1:length(sz) [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), squeeze (y(:,1,1)), sz(i)); vz = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (xi, yi, sz(i) * ones (size (yi)), vz); endfor endif if (length (sy) > 0) for i = length(sy):-1:1 [xi, yi, zi] = meshgrid (squeeze (x(1,:,1)), sy(i), squeeze (z(1,1,:))); vy = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (squeeze (xi), squeeze (sy(i) * ones (size (zi))), squeeze (zi), vy); endfor endif if (length (sx) > 0) for i = length(sx):-1:1 [xi, yi, zi] = meshgrid (sx(i), squeeze (y(:,1,1)), squeeze (z(1,1,:))); vx = squeeze (interp3 (x, y, z, v, xi, yi, zi, method)); tmp(sidx++) = surface (squeeze (sx(i) * ones (size (zi))), squeeze (yi), squeeze(zi), vx); endfor endif else vi = interp3 (x, y, z, v, sx, sy, sz); tmp(sidx++) = surface (sx, sy, sz, vi); endif if (! ishold ()) set (ax, "view", [-37.5, 30.0]); endif if (nargout > 0) h = tmp; endif endfunction