Mercurial > hg > octave-lyh
view doc/interpreter/arith.txi @ 11532:34bb8d38f19f
Add undocumented function cbrt to documentation.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 14 Jan 2011 14:05:15 -0800 |
parents | f98f925d8e5c |
children | 862a8e490445 |
line wrap: on
line source
@c Copyright (C) 1996-2011 John W. Eaton @c @c This file is part of Octave. @c @c Octave is free software; you can redistribute it and/or modify it @c under the terms of the GNU General Public License as published by the @c Free Software Foundation; either version 3 of the License, or (at @c your option) any later version. @c @c Octave is distributed in the hope that it will be useful, but WITHOUT @c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or @c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License @c for more details. @c @c You should have received a copy of the GNU General Public License @c along with Octave; see the file COPYING. If not, see @c <http://www.gnu.org/licenses/>. @node Arithmetic @chapter Arithmetic Unless otherwise noted, all of the functions described in this chapter will work for real and complex scalar, vector, or matrix arguments. Functions described as @dfn{mapping functions} apply the given operation individually to each element when given a matrix argument. For example: @example @group sin ([1, 2; 3, 4]) @result{} 0.84147 0.90930 0.14112 -0.75680 @end group @end example @menu * Exponents and Logarithms:: * Complex Arithmetic:: * Trigonometry:: * Sums and Products:: * Utility Functions:: * Special Functions:: * Coordinate Transformations:: * Mathematical Constants:: @end menu @node Exponents and Logarithms @section Exponents and Logarithms @DOCSTRING(exp) @DOCSTRING(expm1) @DOCSTRING(log) @DOCSTRING(reallog) @DOCSTRING(log1p) @DOCSTRING(log10) @DOCSTRING(log2) @DOCSTRING(pow2) @DOCSTRING(nextpow2) @DOCSTRING(realpow) @DOCSTRING(sqrt) @DOCSTRING(realsqrt) @DOCSTRING(cbrt) @DOCSTRING(nthroot) @node Complex Arithmetic @section Complex Arithmetic In the descriptions of the following functions, @tex $z$ is the complex number $x + iy$, where $i$ is defined as $\sqrt{-1}$. @end tex @ifnottex @var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is defined as @code{sqrt (-1)}. @end ifnottex @DOCSTRING(abs) @DOCSTRING(arg) @DOCSTRING(conj) @DOCSTRING(cplxpair) @DOCSTRING(imag) @DOCSTRING(real) @node Trigonometry @section Trigonometry Octave provides the following trigonometric functions where angles are specified in radians. To convert from degrees to radians multiply by @tex $\pi/180$ @end tex @ifnottex @code{pi/180} @end ifnottex (e.g., @code{sin (30 * pi/180)} returns the sine of 30 degrees). As an alternative, Octave provides a number of trigonometric functions which work directly on an argument specified in degrees. These functions are named after the base trigonometric function with a @samp{d} suffix. For example, @code{sin} expects an angle in radians while @code{sind} expects an angle in degrees. @DOCSTRING(sin) @DOCSTRING(cos) @DOCSTRING(tan) @DOCSTRING(sec) @DOCSTRING(csc) @DOCSTRING(cot) @DOCSTRING(asin) @DOCSTRING(acos) @DOCSTRING(atan) @DOCSTRING(asec) @DOCSTRING(acsc) @DOCSTRING(acot) @DOCSTRING(sinh) @DOCSTRING(cosh) @DOCSTRING(tanh) @DOCSTRING(sech) @DOCSTRING(csch) @DOCSTRING(coth) @DOCSTRING(asinh) @DOCSTRING(acosh) @DOCSTRING(atanh) @DOCSTRING(asech) @DOCSTRING(acsch) @DOCSTRING(acoth) @DOCSTRING(atan2) Octave provides the following trigonometric functions where angles are specified in degrees. These functions produce true zeros at the appropriate intervals rather than the small round-off error that occurs when using radians. For example: @example @group cosd (90) @result{} 0 cos (pi/2) @result{} 6.1230e-17 @end group @end example @DOCSTRING(sind) @DOCSTRING(cosd) @DOCSTRING(tand) @DOCSTRING(secd) @DOCSTRING(cscd) @DOCSTRING(cotd) @DOCSTRING(asind) @DOCSTRING(acosd) @DOCSTRING(atand) @DOCSTRING(asecd) @DOCSTRING(acscd) @DOCSTRING(acotd) @node Sums and Products @section Sums and Products @DOCSTRING(sum) @DOCSTRING(prod) @DOCSTRING(cumsum) @DOCSTRING(cumprod) @DOCSTRING(sumsq) @DOCSTRING(accumarray) @node Utility Functions @section Utility Functions @DOCSTRING(ceil) @DOCSTRING(curl) @DOCSTRING(cross) @DOCSTRING(del2) @DOCSTRING(divergence) @DOCSTRING(factor) @DOCSTRING(factorial) @DOCSTRING(fix) @DOCSTRING(floor) @DOCSTRING(fmod) @DOCSTRING(gcd) @DOCSTRING(gradient) @DOCSTRING(hypot) @DOCSTRING(lcm) @DOCSTRING(list_primes) @DOCSTRING(max) @DOCSTRING(min) @DOCSTRING(cummax) @DOCSTRING(cummin) @DOCSTRING(mod) @DOCSTRING(primes) @DOCSTRING(rem) @DOCSTRING(round) @DOCSTRING(roundb) @DOCSTRING(sign) @node Special Functions @section Special Functions @DOCSTRING(airy) @DOCSTRING(besselj) @DOCSTRING(beta) @DOCSTRING(betainc) @DOCSTRING(betaln) @DOCSTRING(bincoeff) @DOCSTRING(commutation_matrix) @DOCSTRING(duplication_matrix) @DOCSTRING(erf) @DOCSTRING(erfc) @DOCSTRING(erfcx) @DOCSTRING(erfinv) @DOCSTRING(gamma) @DOCSTRING(gammainc) @DOCSTRING(legendre) @anchor{doc-gammaln} @DOCSTRING(lgamma) @node Coordinate Transformations @section Coordinate Transformations @DOCSTRING(cart2pol) @DOCSTRING(pol2cart) @DOCSTRING(cart2sph) @DOCSTRING(sph2cart) @node Mathematical Constants @section Mathematical Constants @DOCSTRING(e) @DOCSTRING(pi) @DOCSTRING(I) @DOCSTRING(Inf) @DOCSTRING(NaN) @DOCSTRING(eps) @DOCSTRING(realmax) @DOCSTRING(realmin)