Mercurial > hg > octave-lyh
view src/mappers.cc @ 11532:34bb8d38f19f
Add undocumented function cbrt to documentation.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Fri, 14 Jan 2011 14:05:15 -0800 |
parents | f98f925d8e5c |
children | 7d6d8c1e471f |
line wrap: on
line source
/* Copyright (C) 1993-2011 John W. Eaton Copyright (C) 2009-2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cctype> #include <cfloat> #include "lo-ieee.h" #include "lo-specfun.h" #include "lo-mappers.h" #include "defun.h" #include "error.h" #include "variables.h" DEFUN (abs, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} abs (@var{z})\n\ Compute the magnitude of @var{z}, defined as\n\ @tex\n\ $|z| = \\sqrt{x^2 + y^2}$.\n\ @end tex\n\ @ifnottex\n\ |@var{z}| = @code{sqrt (x^2 + y^2)}.\n\ @end ifnottex\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ abs (3 + 4i)\n\ @result{} 5\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).abs (); else print_usage (); return retval; } /* %!assert(abs (1), 1); %!assert(abs (-3.5), 3.5); %!assert(abs (3+4i), 5); %!assert(abs (3-4i), 5); %!assert(abs ([1.1, 3i; 3+4i, -3-4i]), [1.1, 3; 5, 5]); %!assert(abs (single(1)), single(1)); %!assert(abs (single(-3.5)), single(3.5)); %!assert(abs (single(3+4i)), single(5)); %!assert(abs (single(3-4i)), single(5)); %!assert(abs (single([1.1, 3i; 3+4i, -3-4i])), single([1.1, 3; 5, 5])); %!error abs (); %!error abs (1, 2); */ DEFUN (acos, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} acos (@var{x})\n\ Compute the inverse cosine in radians for each element of @var{x}.\n\ @seealso{cos, acosd}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).acos (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! v = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! x = [1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]; %! assert(acos (x), v, sqrt(eps)); %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! v = single ([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! x = single ([1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]); %! assert(acos (x), v, sqrt(eps('single'))); %!error acos (); %!error acos (1, 2); */ DEFUN (acosh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} acosh (@var{x})\n\ Compute the inverse hyperbolic cosine for each element of @var{x}.\n\ @seealso{cosh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).acosh (); else print_usage (); return retval; } /* %!test %! v = [0, pi/2*i, pi*i, pi/2*i]; %! x = [1, 0, -1, 0]; %! assert(acosh (x), v, sqrt(eps)); %!test %! v = single([0, pi/2*i, pi*i, pi/2*i]); %! x = single([1, 0, -1, 0]); %! assert(acosh (x), v, sqrt (eps('single'))); %!error acosh (); %!error acosh (1, 2); */ DEFUN (angle, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} angle (@var{z})\n\ See arg.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).arg (); else print_usage (); return retval; } DEFUN (arg, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} arg (@var{z})\n\ @deftypefnx {Mapping Function} {} angle (@var{z})\n\ Compute the argument of @var{z}, defined as,\n\ @tex\n\ $\\theta = atan2 (y, x),$\n\ @end tex\n\ @ifnottex\n\ @var{theta} = @code{atan2 (@var{y}, @var{x})},\n\ @end ifnottex\n\ in radians.\n\ \n\ For example:\n\ \n\ @example\n\ @group\n\ arg (3 + 4i)\n\ @result{} 0.92730\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).arg (); else print_usage (); return retval; } /* %!assert(arg (1), 0); %!assert(arg (i), pi/2); %!assert(arg (-1), pi); %!assert(arg (-i), -pi/2); %!assert(arg ([1, i; -1, -i]), [0, pi/2; pi, -pi/2]); %!assert(arg (single(1)), single(0)); %!assert(arg (single(i)), single(pi/2)); %!assert(arg (single(-1)), single(pi)); %!assert(arg (single(-i)), single(-pi/2)); %!assert(arg (single([1, i; -1, -i])), single([0, pi/2; pi, -pi/2]), 2e1*eps('single')); %!error arg (); %!error arg (1, 2); */ DEFUN (asin, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} asin (@var{x})\n\ Compute the inverse sine in radians for each element of @var{x}.\n\ @seealso{sin, asind}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).asin (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! v = [0, pi/6, pi/4, pi/3, pi/2, pi/3, pi/4, pi/6, 0]; %! x = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]; %! assert(all (abs (asin (x) - v) < sqrt (eps))); %!error asin (); %!error asin (1, 2); */ DEFUN (asinh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} asinh (@var{x})\n\ Compute the inverse hyperbolic sine for each element of @var{x}.\n\ @seealso{sinh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).asinh (); else print_usage (); return retval; } /* %!test %! v = [0, pi/2*i, 0, -pi/2*i]; %! x = [0, i, 0, -i]; %! assert(asinh (x), v, sqrt (eps)); %!test %! v = single([0, pi/2*i, 0, -pi/2*i]); %! x = single([0, i, 0, -i]); %! assert(asinh (x), v, sqrt (eps('single'))); %!error asinh (); %!error asinh (1, 2); */ DEFUN (atan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} atan (@var{x})\n\ Compute the inverse tangent in radians for each element of @var{x}.\n\ @seealso{tan, atand}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).atan (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! v = [0, pi/6, pi/4, pi/3, -pi/3, -pi/4, -pi/6, 0]; %! x = [0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]; %! assert(atan (x), v, sqrt (eps)); %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! v = single([0, pi/6, pi/4, pi/3, -pi/3, -pi/4, -pi/6, 0]); %! x = single([0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]); %! assert(atan (x), v, sqrt (eps('single'))); %!error atan (); %!error atan (1, 2); */ DEFUN (atanh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} atanh (@var{x})\n\ Compute the inverse hyperbolic tangent for each element of @var{x}.\n\ @seealso{tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).atanh (); else print_usage (); return retval; } /* %!test %! v = [0, 0]; %! x = [0, 0]; %! assert(atanh (x), v, sqrt (eps)); %!test %! v = single([0, 0]); %! x = single([0, 0]); %! assert(atanh (x), v, sqrt (eps('single'))); %!error atanh (); %!error atanh (1, 2); */ DEFUN (cbrt, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cbrt (@var{x})\n\ Compute the real cube root of each element of @var{x}.\n\ Unlike @code{@var{x}^(1/3)}, the result will be negative if @var{x} is\n\ negative.\n\ @seealso{nthroot}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cbrt (); else print_usage (); return retval; } /* %!assert (cbrt (64), 4) %!assert (cbrt (-125), -5) %!assert (cbrt (0), 0) %!assert (cbrt (Inf), Inf) %!assert (cbrt (-Inf), -Inf) %!assert (cbrt (NaN), NaN) %!assert (cbrt (2^300), 2^100) %!assert (cbrt (125*2^300), 5*2^100) */ DEFUN (ceil, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} ceil (@var{x})\n\ Return the smallest integer not less than @var{x}. This is equivalent to\n\ rounding towards positive infinity. If @var{x} is\n\ complex, return @code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ ceil ([-2.7, 2.7])\n\ @result{} -2 3\n\ @end group\n\ @end example\n\ @seealso{floor, round, fix}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).ceil (); else print_usage (); return retval; } /* %% double precision %!assert(ceil ([2, 1.1, -1.1, -1]), [2, 2, -1, -1]); %% compelx double precison %!assert(ceil ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i]), [2+2i, 2+2i, -1-i, -1-i]); %% single precision %!assert(ceil (single([2, 1.1, -1.1, -1])), single([2, 2, -1, -1])); %% compelx single preci %!assert(ceil (single ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i])), single([2+2i, 2+2i, -1-i, -1-i])); %!error ceil (); %!error ceil (1, 2); */ DEFUN (conj, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} conj (@var{z})\n\ Return the complex conjugate of @var{z}, defined as\n\ @tex\n\ $\\bar{z} = x - iy$.\n\ @end tex\n\ @ifnottex\n\ @code{conj (@var{z})} = @var{x} - @var{i}@var{y}.\n\ @end ifnottex\n\ @seealso{real, imag}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).conj (); else print_usage (); return retval; } /* %!assert(conj (1), 1); %!assert(conj (i), -i) %!assert(conj (1+i), 1-i) %!assert(conj (1-i), 1+i) %!assert(conj ([-1, -i; -1+i, -1-i]), [-1, i; -1-i, -1+i]); %!assert(conj (single(1)), single(1)); %!assert(conj (single(i)), single(-i)) %!assert(conj (single(1+i)), single(1-i)) %!assert(conj (single(1-i)), single(1+i)) %!assert(conj (single([-1, -i; -1+i, -1-i])), single([-1, i; -1-i, -1+i])); %!error conj (); %!error conj (1, 2); */ DEFUN (cos, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cos (@var{x})\n\ Compute the cosine for each element of @var{x} in radians.\n\ @seealso{acos, cosd, cosh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cos (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! v = [1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]; %! assert(cos (x), v, sqrt (eps)); %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = single([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! v = single([1, rt3/2, rt2/2, 1/2, 0, -1/2, -rt2/2, -rt3/2, -1]); %! assert(cos (x), v, sqrt (eps('single'))); %!error cos (); %!error cos (1, 2); */ DEFUN (cosh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} cosh (@var{x})\n\ Compute the hyperbolic cosine for each element of @var{x}.\n\ @seealso{acosh, sinh, tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).cosh (); else print_usage (); return retval; } /* %!test %! x = [0, pi/2*i, pi*i, 3*pi/2*i]; %! v = [1, 0, -1, 0]; %! assert(cosh (x), v, sqrt (eps)); %!test %! x = single([0, pi/2*i, pi*i, 3*pi/2*i]); %! v = single([1, 0, -1, 0]); %! assert(cosh (x), v, sqrt (eps ('single'))); %!error cosh (); %!error cosh (1, 2); */ DEFUN (erf, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erf (@var{z})\n\ Computes the error function,\n\ @tex\n\ $$\n\ {\\rm erf} (z) = {2 \\over \\sqrt{\\pi}}\\int_0^z e^{-t^2} dt\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @group\n\ z\n\ /\n\ erf (z) = (2/sqrt (pi)) | e^(-t^2) dt\n\ /\n\ t=0\n\ @end group\n\ @end example\n\ \n\ @end ifnottex\n\ @seealso{erfc, erfcx, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erf (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt(-1/(6.4187*6.4187)); %! assert (erf(a), erf(real(a))); %!test %! x=[0,.5,1]; %! v=[0, .520499877813047, .842700792949715]; %! assert(all(abs(erf(x)-v)<1.e-10) && all(abs(erf(-x)+v)<1.e-10) && all(abs(erfc(x)+v-1)<1.e-10) && all(abs(erfinv(v)-x)<1.e-10)); %!test %! a = -1i*sqrt(single (-1/(6.4187*6.4187))); %! assert (erf(a), erf(real(a))); %!test %! x=single ([0,.5,1]); %! v=single ([0, .520499877813047, .842700792949715]); %! assert(all(abs(erf(x)-v)<1.e-6) && all(abs(erf(-x)+v)<1.e-6) && all(abs(erfc(x)+v-1)<1.e-6) && all(abs(erfinv(v)-x)<1.e-6)); %% test/octave.test/arith/erf-2.m %!error erf(); %% test/octave.test/arith/erf-3.m %!error erf(1,2); */ DEFUN (erfinv, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfinv (@var{x})\n\ Computes the inverse error function, i.e., @var{y} such that\n\ \n\ @example\n\ erf(@var{y}) == @var{x}\n\ @end example\n\ @seealso{erf, erfc, erfcx}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfinv (); else print_usage (); return retval; } /* %% middle region %!assert (erf (erfinv ([-0.9 -0.3 0 0.4 0.8])), [-0.9 -0.3 0 0.4 0.8], eps) %!assert (erf (erfinv (single ([-0.9 -0.3 0 0.4 0.8]))), single ([-0.9 -0.3 0 0.4 0.8]), 1e-8) %% tail region %!assert (erf (erfinv ([-0.999 -0.99 0.9999 0.99999])), [-0.999 -0.99 0.9999 0.99999], eps) %!assert (erf (erfinv (single ([-0.999 -0.99 0.9999 0.99999]))), single ([-0.999 -0.99 0.9999 0.99999]), 1e-8) %% backward - loss of accuracy %!assert (erfinv (erf ([-3 -1 -0.4 0.7 1.3 2.8])), [-3 -1 -0.4 0.7 1.3 2.8], -1e-12) %!assert (erfinv (erf (single ([-3 -1 -0.4 0.7 1.3 2.8]))), single ([-3 -1 -0.4 0.7 1.3 2.8]), -1e-4) %% exceptional %!assert (erfinv ([-1, 1, 1.1, -2.1]), [-Inf, Inf, NaN, NaN]) %!error erfinv (1+2i) */ DEFUN (erfc, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfc (@var{z})\n\ Computes the complementary error function,\n\ @tex\n\ $1 - {\\rm erf} (z)$.\n\ @end tex\n\ @ifnottex\n\ @code{1 - erf (@var{z})}.\n\ @end ifnottex\n\ @seealso{erfcx, erf, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfc (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt(-1/(6.4187*6.4187)); %! assert (erfc(a), erfc(real(a))); */ DEFUN (erfcx, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} erfcx (@var{z})\n\ Computes the scaled complementary error function,\n\ @tex\n\ $z^2 (1 - {\\rm erf} (z))$.\n\ @end tex\n\ @ifnottex\n\ @code{z^2*(1 - erf (@var{z}))}.\n\ @end ifnottex\n\ @seealso{erfc, erf, erfinv}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).erfcx (); else print_usage (); return retval; } /* */ DEFUN (exp, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} exp (@var{x})\n\ Compute\n\ @tex\n\ $e^{x}$\n\ @end tex\n\ @ifnottex\n\ @code{e^x}\n\ @end ifnottex\n\ for each element of @var{x}. To compute the matrix\n\ exponential, see @ref{Linear Algebra}.\n\ @seealso{log}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).exp (); else print_usage (); return retval; } /* %!assert(exp ([0, 1, -1, -1000]), [1, e, 1/e, 0], sqrt (eps)); %!assert(exp (1+i), e * (cos (1) + sin (1) * i), sqrt (eps)); %!assert(exp (single([0, 1, -1, -1000])), single([1, e, 1/e, 0]), sqrt (eps('single'))); %!assert(exp (single(1+i)), single (e * (cos (1) + sin (1) * i)), sqrt (eps('single'))); %!error exp (); %!error exp (1, 2); %!assert(exp (Inf) == Inf && exp (-Inf) == 0 && isnan (exp (NaN))); %!assert(exp (Inf ('single')) == Inf('single') && exp (-Inf('single')) == 0 && isnan (exp (NaN('single')))); */ DEFUN (expm1, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} expm1 (@var{x})\n\ Compute\n\ @tex\n\ $ e^{x} - 1 $\n\ @end tex\n\ @ifnottex\n\ @code{exp (@var{x}) - 1}\n\ @end ifnottex\n\ accurately in the neighborhood of zero.\n\ @seealso{exp}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).expm1 (); else print_usage (); return retval; } DEFUN (isfinite, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isfinite (@var{x})\n\ @deftypefnx {Mapping Function} {} finite (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ finite values and false where they are not.\n\ For example:\n\ \n\ @example\n\ @group\n\ finite ([13, Inf, NA, NaN])\n\ @result{} [ 1, 0, 0, 0 ]\n\ @end group\n\ @end example\n\ @seealso{isinf, isnan, isna}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).finite (); else print_usage (); return retval; } /* %!assert(!(finite (Inf))); %!assert(!(finite (NaN))); %!assert(finite (rand(1,10))); %!assert(!(finite (single(Inf)))); %!assert(!(finite (single(NaN)))); %!assert(finite (single(rand(1,10)))); */ DEFUN (fix, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} fix (@var{x})\n\ Truncate fractional portion of @var{x} and return the integer portion. This\n\ is equivalent to rounding towards zero. If @var{x} is complex, return\n\ @code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ fix ([-2.7, 2.7])\n\ @result{} -2 2\n\ @end group\n\ @end example\n\ @seealso{ceil, floor, round}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).fix (); else print_usage (); return retval; } /* %!assert(fix ([1.1, 1, -1.1, -1]), [1, 1, -1, -1]); %!assert(fix ([1.1+1.1i, 1+i, -1.1-1.1i, -1-i]), [1+i, 1+i, -1-i, -1-i]); %!assert(fix (single([1.1, 1, -1.1, -1])), single([1, 1, -1, -1])); %!assert(fix (single([1.1+1.1i, 1+i, -1.1-1.1i, -1-i])), single([1+i, 1+i, -1-i, -1-i])); %!error fix (); %!error fix (1, 2); */ DEFUN (floor, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} floor (@var{x})\n\ Return the largest integer not greater than @var{x}. This is equivalent to\n\ rounding towards negative infinity. If @var{x} is\n\ complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ floor ([-2.7, 2.7])\n\ @result{} -3 2\n\ @end group\n\ @end example\n\ @seealso{ceil, round, fix}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).floor (); else print_usage (); return retval; } /* %!assert(floor ([2, 1.1, -1.1, -1]), [2, 1, -2, -1]); %!assert(floor ([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i]), [2+2i, 1+i, -2-2i, -1-i]); %!assert(floor (single ([2, 1.1, -1.1, -1])), single ([2, 1, -2, -1])); %!assert(floor (single([2+2i, 1.1+1.1i, -1.1-1.1i, -1-i])), single([2+2i, 1+i, -2-2i, -1-i])); %!error floor (); %!error floor (1, 2); */ DEFUN (gamma, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} gamma (@var{z})\n\ Computes the Gamma function,\n\ @tex\n\ $$\n\ \\Gamma (z) = \\int_0^\\infty t^{z-1} e^{-t} dt.\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @group\n\ infinity\n\ /\n\ gamma (z) = | t^(z-1) exp (-t) dt.\n\ /\n\ t=0\n\ @end group\n\ @end example\n\ \n\ @end ifnottex\n\ @seealso{gammainc, lgamma}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).gamma (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt(-1/(6.4187*6.4187)); %! assert (gamma(a), gamma(real(a))); %!test %! x = [.5, 1, 1.5, 2, 3, 4, 5]; %! v = [sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]; %! assert(gamma(x), v, sqrt(eps)) %!test %! a = single(-1i*sqrt(-1/(6.4187*6.4187))); %! assert (gamma(a), gamma(real(a))); %!test %! x = single([.5, 1, 1.5, 2, 3, 4, 5]); %! v = single([sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]); %! assert(gamma(x), v, sqrt(eps('single'))) %!test %! x = [-1, 0, 1, Inf]; %! v = [Inf, Inf, 1, Inf]; %! assert (gamma(x), v); %! assert (gamma(single (x)), single (v)); %!error gamma(); %!error gamma(1,2); */ DEFUN (imag, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} imag (@var{z})\n\ Return the imaginary part of @var{z} as a real number.\n\ @seealso{real, conj}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).imag (); else print_usage (); return retval; } /* %!assert(imag (1), 0); %!assert(imag (i), 1); %!assert(imag (1+i), 1); %!assert(imag ([i, 1; 1, i]), full (eye (2))); %!assert(imag (single(1)), single(0)); %!assert(imag (single(i)), single(1)); %!assert(imag (single(1+i)), single(1)); %!assert(imag (single([i, 1; 1, i])), full (eye (2,'single'))); %!error imag (); %!error imag (1, 2); */ DEFUNX ("isalnum", Fisalnum, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isalnum (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ letters or digits and false where they are not. This is equivalent to\n\ (@code{isalpha (@var{s}) | isdigit (@var{s})}).\n\ @seealso{isalpha, isdigit, ispunct, isspace, iscntrl}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisalnum (); else print_usage (); return retval; } DEFUNX ("isalpha", Fisalpha, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isalpha (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ letters and false where they are not. This is equivalent to\n\ (@code{islower (@var{s}) | isupper (@var{s})}).\n\ @seealso{isdigit, ispunct, isspace, iscntrl, isalnum, islower, isupper}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisalpha (); else print_usage (); return retval; } DEFUNX ("isascii", Fisascii, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isascii (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ ASCII characters (in the range 0 to 127 decimal) and false where they are\n\ not.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisascii (); else print_usage (); return retval; } DEFUNX ("iscntrl", Fiscntrl, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} iscntrl (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ control characters and false where they are not.\n\ @seealso{ispunct, isspace, isalpha, isdigit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xiscntrl (); else print_usage (); return retval; } DEFUNX ("isdigit", Fisdigit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isdigit (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ decimal digits (0-9) and false where they are not.\n\ @seealso{isxdigit, isalpha, isletter, ispunct, isspace, iscntrl}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisdigit (); else print_usage (); return retval; } DEFUN (isinf, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isinf (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ are infinite and false where they are not.\n\ For example:\n\ \n\ @example\n\ @group\n\ isinf ([13, Inf, NA, NaN])\n\ @result{} [ 0, 1, 0, 0 ]\n\ @end group\n\ @end example\n\ @seealso{isfinite, isnan, isna}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isinf (); else print_usage (); return retval; } /* %!assert(isinf (Inf)); %!assert(!isinf (NaN)); %!assert(!(isinf (NA))); %!assert(isinf (rand(1,10)), false(1,10)); %!assert(isinf([NaN -Inf -1 0 1 Inf NA]), [false, true, false, false, false, true, false]); %!assert(isinf (single(Inf))); %!assert(!(isinf (single(NaN)))); %!assert(!(isinf (single(NA)))); %!assert(isinf (single(rand(1,10))), false(1,10)); %!assert(isinf(single([NaN -Inf -1 0 1 Inf NA])), [false, true, false, false, false, true, false]); */ DEFUNX ("isgraph", Fisgraph, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isgraph (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ printable characters (but not the space character) and false where they are\n\ not.\n\ @seealso{isprint}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisgraph (); else print_usage (); return retval; } DEFUNX ("islower", Fislower, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} islower (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ lower case letters and false where they are not.\n\ @seealso{isupper, isalpha, isletter, isalnum}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xislower (); else print_usage (); return retval; } DEFUN (isna, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isna (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ NA (missing) values and false where they are not.\n\ For example:\n\ \n\ @example\n\ @group\n\ isna ([13, Inf, NA, NaN])\n\ @result{} [ 0, 0, 1, 0 ]\n\ @end group\n\ @end example\n\ @seealso{isnan, isinf, isfinite}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isna (); else print_usage (); return retval; } /* %!assert(!(isna (Inf))); %!assert(!isna (NaN)); %!assert(isna (NA)); %!assert(isna (rand(1,10)), false(1,10)); %!assert(isna([NaN -Inf -1 0 1 Inf NA]), [false, false, false, false, false, false, true]); %!assert(!(isna (single(Inf)))); %!assert(!isna (single(NaN))); %!assert(isna (single(NA))); %!assert(isna (single(rand(1,10))), false(1,10)); %!assert(isna(single([NaN -Inf -1 0 1 Inf NA])), [false, false, false, false, false, false, true]); */ DEFUN (isnan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isnan (@var{x})\n\ Return a logical array which is true where the elements of @var{x} are\n\ NaN values and false where they are not.\n\ NA values are also considered NaN values. For example:\n\ \n\ @example\n\ @group\n\ isnan ([13, Inf, NA, NaN])\n\ @result{} [ 0, 0, 1, 1 ]\n\ @end group\n\ @end example\n\ @seealso{isna, isinf, isfinite}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).isnan (); else print_usage (); return retval; } /* %!assert(!(isnan (Inf))); %!assert(isnan (NaN)); %!assert(isnan (NA)); %!assert(isnan (rand(1,10)), false(1,10)); %!assert(isnan([NaN -Inf -1 0 1 Inf NA]), [true, false, false, false, false, false, true]); %!assert(!(isnan (single(Inf)))); %!assert(isnan (single(NaN))); %!assert(isnan (single(NA))); %!assert(isnan (single(rand(1,10))), false(1,10)); %!assert(isnan(single([NaN -Inf -1 0 1 Inf NA])), [true, false, false, false, false, false, true]); */ DEFUNX ("isprint", Fisprint, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isprint (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ printable characters (including the space character) and false where they\n\ are not.\n\ @seealso{isgraph}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisprint (); else print_usage (); return retval; } DEFUNX ("ispunct", Fispunct, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} ispunct (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ punctuation characters and false where they are not.\n\ @seealso{isalpha, isdigit, isspace, iscntrl}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xispunct (); else print_usage (); return retval; } DEFUNX ("isspace", Fisspace, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isspace (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ whitespace characters (space, formfeed, newline, carriage return, tab, and\n\ vertical tab) and false where they are not.\n\ @seealso{iscntrl, ispunct, isalpha, isdigit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisspace (); else print_usage (); return retval; } DEFUNX ("isupper", Fisupper, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isupper (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ upper case letters and false where they are not.\n\ @seealso{islower, isalpha, isletter, isalnum}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisupper (); else print_usage (); return retval; } DEFUNX ("isxdigit", Fisxdigit, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} isxdigit (@var{s})\n\ Return a logical array which is true where the elements of @var{s} are\n\ hexadecimal digits (0-9 and a-fA-F).\n\ @seealso{isdigit}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xisxdigit (); else print_usage (); return retval; } DEFUN (lgamma, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} lgamma (@var{x})\n\ @deftypefnx {Mapping Function} {} gammaln (@var{x})\n\ Return the natural logarithm of the gamma function of @var{x}.\n\ @seealso{gamma, gammainc}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).lgamma (); else print_usage (); return retval; } /* %!test %! a = -1i*sqrt(-1/(6.4187*6.4187)); %! assert (lgamma(a), lgamma(real(a))); %!test %! x = [.5, 1, 1.5, 2, 3, 4, 5]; %! v = [sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]; %! assert(lgamma(x), log(v), sqrt(eps)) %!test %! a = single(-1i*sqrt(-1/(6.4187*6.4187))); %! assert (lgamma(a), lgamma(real(a))); %!test %! x = single([.5, 1, 1.5, 2, 3, 4, 5]); %! v = single([sqrt(pi), 1, .5*sqrt(pi), 1, 2, 6, 24]); %! assert(lgamma(x), log(v), sqrt(eps ('single'))) %!test %! x = [-1, 0, 1, Inf]; %! v = [Inf, Inf, 0, Inf]; %! assert (lgamma(x), v); %! assert (lgamma(single (x)), single(v)); %!error lgamma(); %!error lgamma(1,2); */ DEFUN (log, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log (@var{x})\n\ Compute the natural logarithm,\n\ @tex\n\ $\\ln{(x)},$\n\ @end tex\n\ @ifnottex\n\ @code{ln (@var{x})},\n\ @end ifnottex\n\ for each element of @var{x}. To compute the\n\ matrix logarithm, see @ref{Linear Algebra}.\n\ @seealso{exp, log1p, log2, log10, logspace}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log (); else print_usage (); return retval; } /* %!assert(log ([1, e, e^2]), [0, 1, 2], sqrt (eps)); %!assert(log ([-0.5, -1.5, -2.5]), log([0.5, 1.5, 2.5]) + pi*1i, sqrt (eps)); %!assert(log (single([1, e, e^2])), single([0, 1, 2]), sqrt (eps('single'))); %!assert(log (single([-0.5, -1.5, -2.5])), single(log([0.5, 1.5, 2.5]) + pi*1i), 4*eps('single')); %!error log (); %!error log (1, 2); */ DEFUN (log10, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log10 (@var{x})\n\ Compute the base-10 logarithm of each element of @var{x}.\n\ @seealso{log, log2, logspace, exp}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log10 (); else print_usage (); return retval; } /* %!assert(log10 ([0.01, 0.1, 1, 10, 100]), [-2, -1, 0, 1, 2], sqrt (eps)); %!assert(log10 (single([0.01, 0.1, 1, 10, 100])), single([-2, -1, 0, 1, 2]), sqrt (eps ('single'))); %!error log10 (); %!error log10 (1, 2); */ DEFUN (log1p, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} log1p (@var{x})\n\ Compute\n\ @tex\n\ $\\ln{(1 + x)}$\n\ @end tex\n\ @ifnottex\n\ @code{log (1 + @var{x})}\n\ @end ifnottex\n\ accurately in the neighborhood of zero.\n\ @seealso{log, exp, expm1}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).log1p (); else print_usage (); return retval; } DEFUN (real, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} real (@var{z})\n\ Return the real part of @var{z}.\n\ @seealso{imag, conj}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).real (); else print_usage (); return retval; } /* %!assert(real (1), 1); %!assert(real (i), 0); %!assert(real (1+i), 1); %!assert(real ([1, i; i, 1]), full (eye (2))); %!assert(real (single(1)), single(1)); %!assert(real (single(i)), single(0)); %!assert(real (single(1+i)), single(1)); %!assert(real (single([1, i; i, 1])), full (eye (2,'single'))); %!error real (); %!error real (1, 2); */ DEFUN (round, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} round (@var{x})\n\ Return the integer nearest to @var{x}. If @var{x} is complex, return\n\ @code{round (real (@var{x})) + round (imag (@var{x})) * I}.\n\ \n\ @example\n\ @group\n\ round ([-2.7, 2.7])\n\ @result{} -3 3\n\ @end group\n\ @end example\n\ @seealso{ceil, floor, fix}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).round (); else print_usage (); return retval; } /* %!assert(round (1), 1); %!assert(round (1.1), 1); %!assert(round (5.5), 6); %!assert(round (i), i); %!assert(round (2.5+3.5i), 3+4i); %!assert(round (-2.6), -3); %!assert(round ([1.1, -2.4; -3.7, 7.1]), [1, -2; -4, 7]); %!assert(round (single(1)), single(1)); %!assert(round (single(1.1)), single(1)); %!assert(round (single(5.5)), single(6)); %!assert(round (single(i)), single(i)); %!assert(round (single(2.5+3.5i)), single(3+4i)); %!assert(round (single(-2.6)), single(-3)); %!assert(round (single([1.1, -2.4; -3.7, 7.1])), single([1, -2; -4, 7])); %!error round (); %!error round (1, 2); */ DEFUN (roundb, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} roundb (@var{x})\n\ Return the integer nearest to @var{x}. If there are two nearest\n\ integers, return the even one (banker's rounding). If @var{x} is complex,\n\ return @code{roundb (real (@var{x})) + roundb (imag (@var{x})) * I}.\n\ @seealso{round}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).roundb (); else print_usage (); return retval; } DEFUN (sign, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sign (@var{x})\n\ Compute the @dfn{signum} function, which is defined as\n\ @tex\n\ $$\n\ {\\rm sign} (@var{x}) = \\cases{1,&$x>0$;\\cr 0,&$x=0$;\\cr -1,&$x<0$.\\cr}\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @example\n\ @group\n\ -1, x < 0;\n\ sign (x) = 0, x = 0;\n\ 1, x > 0.\n\ @end group\n\ @end example\n\ \n\ @end ifnottex\n\ \n\ For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).signum (); else print_usage (); return retval; } /* %!assert(sign (-2) , -1); %!assert(sign (3), 1); %!assert(sign (0), 0); %!assert(sign ([1, -pi; e, 0]), [1, -1; 1, 0]); %!assert(sign (single(-2)) , single(-1)); %!assert(sign (single(3)), single(1)); %!assert(sign (single(0)), single(0)); %!assert(sign (single([1, -pi; e, 0])), single([1, -1; 1, 0])); %!error sign (); %!error sign (1, 2); */ DEFUN (sin, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sin (@var{x})\n\ Compute the sine for each element of @var{x} in radians.\n\ @seealso{asin, sind, sinh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sin (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = [0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! v = [0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]; %! assert(sin (x), v, sqrt (eps)); %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = single([0, pi/6, pi/4, pi/3, pi/2, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! v = single([0, 1/2, rt2/2, rt3/2, 1, rt3/2, rt2/2, 1/2, 0]); %! assert(sin (x), v, sqrt (eps('single'))); %!error sin (); %!error sin (1, 2); */ DEFUN (sinh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sinh (@var{x})\n\ Compute the hyperbolic sine for each element of @var{x}.\n\ @seealso{asinh, cosh, tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sinh (); else print_usage (); return retval; } /* %!test %! x = [0, pi/2*i, pi*i, 3*pi/2*i]; %! v = [0, i, 0, -i]; %! assert(sinh (x), v, sqrt (eps)); %!test %! x = single([0, pi/2*i, pi*i, 3*pi/2*i]); %! v = single([0, i, 0, -i]); %! assert(sinh (x), v, sqrt (eps('single'))); %!error sinh (); %!error sinh (1, 2); */ DEFUN (sqrt, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} sqrt (@var{x})\n\ Compute the square root of each element of @var{x}. If @var{x} is negative,\n\ a complex result is returned. To compute the matrix square root, see\n\ @ref{Linear Algebra}.\n\ @seealso{realsqrt, nthroot}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).sqrt (); else print_usage (); return retval; } /* %!assert(sqrt (4), 2) %!assert(sqrt (-1), i) %!assert(sqrt (1+i), exp (0.5 * log (1+i)), sqrt (eps)); %!assert(sqrt([4, -4; i, 1-i]), [2, 2i; exp(0.5 * log (i)), exp(0.5 * log (1-i))], sqrt(eps)); %!assert(sqrt (single(4)), single(2)) %!assert(sqrt (single(-1)), single(i)) %!assert(sqrt (single(1+i)), single(exp (0.5 * log (1+i))), sqrt (eps('single'))); %!assert(sqrt(single([4, -4; i, 1-i])), single([2, 2i; exp(0.5 * log (i)), exp(0.5 * log (1-i))]), sqrt(eps('single'))); %!error sqrt (); %!error sqrt (1, 2); */ DEFUN (tan, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tan (@var{z})\n\ Compute the tangent for each element of @var{x} in radians.\n\ @seealso{atan, tand, tanh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).tan (); else print_usage (); return retval; } /* %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = [0, pi/6, pi/4, pi/3, 2*pi/3, 3*pi/4, 5*pi/6, pi]; %! v = [0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]; %! assert(tan (x), v, sqrt (eps)); %!test %! rt2 = sqrt (2); %! rt3 = sqrt (3); %! x = single([0, pi/6, pi/4, pi/3, 2*pi/3, 3*pi/4, 5*pi/6, pi]); %! v = single([0, rt3/3, 1, rt3, -rt3, -1, -rt3/3, 0]); %! assert(tan (x), v, sqrt (eps('single'))); %!error tan (); %!error tan (1, 2); */ DEFUN (tanh, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tanh (@var{x})\n\ Compute hyperbolic tangent for each element of @var{x}.\n\ @seealso{atanh, sinh, cosh}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).tanh (); else print_usage (); return retval; } /* %!test %! x = [0, pi*i]; %! v = [0, 0]; %! assert(tanh (x), v, sqrt (eps)); %!test %! x = single([0, pi*i]); %! v = single([0, 0]); %! assert(tanh (x), v, sqrt (eps('single'))); %!error tanh (); %!error tanh (1, 2); */ DEFUNX ("toascii", Ftoascii, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} toascii (@var{s})\n\ Return ASCII representation of @var{s} in a matrix. For example:\n\ \n\ @example\n\ @group\n\ toascii (\"ASCII\")\n\ @result{} [ 65, 83, 67, 73, 73 ]\n\ @end group\n\ \n\ @end example\n\ @seealso{char}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtoascii (); else print_usage (); return retval; } DEFUNX ("tolower", Ftolower, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} tolower (@var{s})\n\ @deftypefnx {Mapping Function} {} lower (@var{s})\n\ Return a copy of the string or cell string @var{s}, with each upper-case\n\ character replaced by the corresponding lower-case one; non-alphabetic\n\ characters are left unchanged. For example:\n\ \n\ @example\n\ @group\n\ tolower (\"MiXeD cAsE 123\")\n\ @result{} \"mixed case 123\"\n\ @end group\n\ @end example\n\ @seealso{toupper}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtolower (); else print_usage (); return retval; } DEFALIAS (lower, tolower); /* %!error <Invalid call to tolower.*> tolower(); %!error <Invalid call to tolower.*> lower(); %!assert(tolower("OCTAVE"), "octave"); %!assert(tolower("123OCTave!_&"), "123octave!_&"); %!assert(tolower({"ABC", "DEF", {"GHI", {"JKL"}}}), {"abc", "def", {"ghi", {"jkl"}}}); %!assert(tolower(["ABC"; "DEF"]), ["abc"; "def"]); %!assert(tolower({["ABC"; "DEF"]}), {["abc";"def"]}); %!assert(tolower(68), "d"); %!assert(tolower({[68, 68; 68, 68]}), {["dd";"dd"]}); %!test %! a(3,3,3,3) = "D"; %! assert(tolower(a)(3,3,3,3), "d"); */ DEFUNX ("toupper", Ftoupper, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} toupper (@var{s})\n\ @deftypefnx {Built-in Function} {} upper (@var{s})\n\ Return a copy of the string or cell string @var{s}, with each lower-case\n\ character replaced by the corresponding upper-case one; non-alphabetic\n\ characters are left unchanged. For example:\n\ \n\ @example\n\ @group\n\ toupper (\"MiXeD cAsE 123\")\n\ @result{} \"MIXED CASE 123\"\n\ @end group\n\ @end example\n\ @seealso{tolower}\n\ @end deftypefn") { octave_value retval; if (args.length () == 1) retval = args(0).xtoupper (); else print_usage (); return retval; } DEFALIAS (upper, toupper); /* %!error <Invalid call to toupper.*> toupper(); %!error <Invalid call to toupper.*> upper(); %!assert(toupper("octave"), "OCTAVE"); %!assert(toupper("123OCTave!_&"), "123OCTAVE!_&"); %!assert(toupper({"abc", "def", {"ghi", {"jkl"}}}), {"ABC", "DEF", {"GHI", {"JKL"}}}); %!assert(toupper(["abc"; "def"]), ["ABC"; "DEF"]); %!assert(toupper({["abc"; "def"]}), {["ABC";"DEF"]}); %!assert(toupper(100), "D"); %!assert(toupper({[100, 100; 100, 100]}), {["DD";"DD"]}); %!test %! a(3,3,3,3) = "d"; %! assert(toupper(a)(3,3,3,3), "D"); */ DEFALIAS (gammaln, lgamma); DEFALIAS (finite, isfinite);