Mercurial > hg > octave-lyh
view scripts/plot/specular.m @ 17455:359366a4994f
waitbar.m: Use Octave coding conventions.
* scripts/plot/waitbar.m: Rename 'retval' to 'h' to match documentation.
Use 'hf', 'hp' for figure and patch graphics handles.
author | Rik <rik@octave.org> |
---|---|
date | Thu, 19 Sep 2013 14:26:47 -0700 |
parents | ed149e891876 |
children |
line wrap: on
line source
## Copyright (C) 2009-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv}) ## @deftypefnx {Function File} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv}, @var{se}) ## Calculate specular reflection strength of a surface defined by the normal ## vector elements @var{sx}, @var{sy}, @var{sz} using Phong's approximation. ## ## The light source location and viewer location vectors can be specified using ## parameter @var{lv} and @var{vv} respectively. The location vectors can ## given as 2-element vectors [azimuth, elevation] in degrees or as 3-element ## vectors [x, y, z]. ## ## An optional sixth argument describes the specular exponent (spread) @var{se}. ## @seealso{diffuse, surfl} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> function retval = specular (sx, sy, sz, lv, vv, se) if (nargin < 5 || nargin > 6) print_usage (); endif ## Checks for specular exponent (se). if (nargin < 6) se = 10; else if (!isnumeric (se) || numel (se) != 1 || se <= 0) error ("specular: exponent must be positive scalar"); endif endif ## Checks for normal vector. if (!size_equal (sx, sy, sz)) error ("specular: SX, SY, and SZ must have same size"); endif ## Check for light vector (lv) argument. if (length (lv) < 2 || length (lv) > 3) error ("specular: light vector LV must be a 2- or 3-element vector"); elseif (length (lv) == 2) [lv(1), lv(2), lv(3)] = sph2cart (lv(1) * pi/180, lv(2) * pi/180, 1.0); endif ## Check for view vector (vv) argument. if (length (vv) < 2 || length (lv) > 3) error ("specular: view vector VV must be a 2- or 3-element vector"); elseif (length (vv) == 2) [vv(1), vv(2), vv(3)] = sph2cart (vv(1) * pi / 180, vv(2) * pi / 180, 1.0); endif ## Normalize view and light vector. if (sum (abs (lv)) > 0) lv /= norm (lv); endif if (sum (abs (vv)) > 0) vv /= norm (vv); endif ## Calculate normal vector lengths and dot-products. ns = sqrt (sx.^2 + sy.^2 + sz.^2); l_dot_n = (sx * lv(1) + sy * lv(2) + sz * lv(3)) ./ ns; v_dot_n = (sx * vv(1) + sy * vv(2) + sz * vv(3)) ./ ns; ## Calculate specular reflection using Phong's approximation. retval = 2 * l_dot_n .* v_dot_n - dot (lv, vv); ## Set zero if light is on the other side. retval(l_dot_n < 0) = 0; ## Allow postive values only. retval(retval < 0) = 0; retval = retval .^ se; endfunction