Mercurial > hg > octave-lyh
view scripts/optimization/fzero.m @ 8305:368b504777a8
implement fzero
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Fri, 31 Oct 2008 08:06:45 +0100 |
parents | |
children | 77b8d4aa2743 |
line wrap: on
line source
## Copyright (C) 2008 VZLU Prague, a.s. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## ## Author: Jaroslav Hajek <highegg@gmail.com> # -*- texinfo -*- # @deftypefn{Function File}{[@var{x}, @var{fval}, @var{info}, @var{output}] =} fzero (@var{fun}, @var{x0}, @var{options}) # Finds a zero point of a univariate function. @var{fun} should be a function # handle or name. @var{x0} specifies a starting point. @var{options} is a # structure specifying additional options. Currently, fzero recognizes these # options: FunValCheck, OutputFcn, TolX, MaxIter, MaxFunEvals. # For description of these options, see @code{optimset}. # # On exit, the function returns @var{x}, the approximate zero point # and @var{fval}, the function value thereof. # @var{info} is an exit flag that can have these values: # @itemize # @item 1 # The algorithm converged to a solution. # @item 0 # Maximum number of iterations or function evaluations has been exhausted. # @item -1 # The algorithm has been terminated from user output function. # @item -2 # A general unexpected error. # @item -3 # A non-real value encountered. # @item -4 # A NaN value encountered. # @end itemize # @seealso{optimset, fminbnd, fsolve} # @end deftypefn # This is essentially the ACM algorithm 748: Enclosing Zeros of Continuous # Functions due to Alefeld, Potra and Shi, ACM Transactions on Mathematical # Software, Vol. 21, No. 3, September 1995. # Although the workflow should be the same, the structure of the algorithm has # been transformed non-trivially; instead of the authors' approach of # sequentially calling building blocks subprograms we implement here a FSM # version using one interior point determination and one bracketing per # iteration, thus reducing the number of temporary variables and simplifying # the algorithm structure. Further, this approach reduces the need for external # functions and error handling. The algorithm has also been slightly modified. # function [x, fval, info, output] = fzero (fun, x0, options = struct ()) if (nargin < 2 || nargin > 3) print_usage (); endif if (ischar (fun)) fun = str2func (fun); endif # TODO #displev = optimget (options, "Display", "notify"); funvalchk = strcmp (optimget (options, "FunValCheck", "off"), "on"); outfcn = optimget (options, "OutputFcn"); tolx = optimget (options, "TolX", 0); maxiter = optimget (options, "MaxIter", Inf); maxfev = optimget (options, "MaxFunEvals", Inf); persistent mu = 0.5; if (funvalchk) # replace fun with a guarded version fun = @(x) guarded_eval (fun, x); endif info = 0; # the default exit flag if exceeded number of iterations niter = 0; nfev = 0; x = fval = a = fa = b = fb = NaN; # prepare... a = x0(1); fa = fun (a); nfev = 1; if (length (x0) > 1) b = x0(2); fb = fun (b); nfev += 1; else # try to get b if (a == 0) aa = 1; else aa = a; endif for b = [0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa 1.5*aa, -aa, 2*aa, -10*aa, 10*aa] fb = fun (b); nfev += 1; if (sign (fa) * sign (fb) <= 0) break; endif endfor endif if (b < a) u = a; a = b; b = u; fu = fa; fa = fb; fb = fu; endif if (! (sign (fa) * sign (fb) <= 0)) error ("fzero:bracket", "fzero: not a valid initial bracketing"); endif itype = 1; if (abs (fa) < abs (fb)) u = a; fu = fa; else u = b; fu = fb; endif d = e = u; fd = fe = fu; mba = mu*(b - a); while (niter < maxiter && nfev < maxfev) switch (itype) case 1 # the initial test if (b - a <= 2*(2 * abs (u) * eps + tolx)) x = u; fval = fu; info = 1; break; endif if (abs (fa) <= 1e3*abs (fb) && abs (fb) <= 1e3*abs (fa)) # secant step c = u - (a - b) / (fa - fb) * fu; else # bisection step c = 0.5*(a + b); endif d = u; fd = fu; itype = 5; case {2, 3} l = length (unique ([fa, fb, fd, fe])); if (l == 4) # inverse cubic interpolation q11 = (d - e) * fd / (fe - fd); q21 = (b - d) * fb / (fd - fb); q31 = (a - b) * fa / (fb - fa); d21 = (b - d) * fd / (fd - fb); d31 = (a - b) * fb / (fb - fa); q22 = (d21 - q11) * fb / (fe - fb); q32 = (d31 - q21) * fa / (fd - fa); d32 = (d31 - q21) * fd / (fd - fa); q33 = (d32 - q22) * fa / (fe - fa); c = a + q31 + q32 + q33; endif if (l < 4 || sign (c - a) * sign (c - b) > 0) # quadratic interpolation + newton a0 = fa; a1 = (fb - fa)/(b - a); a2 = ((fd - fb)/(d - b) - a1) / (d - a); # modification 1: this is simpler and does not seem to be worse c = a - a0/a1; if (a2 != 0) c = a - a0/a1; for i = 1:itype pc = a0 + (a1 + a2*(c - b))*(c - a); pdc = a1 + a2*(2*c - a - b); if (pdc == 0) c = a - a0/a1; break; endif c -= pc/pdc; endfor endif endif itype += 1; case 4 # double secant step c = u - 2*(b - a)/(fb - fa)*fu; # bisect if too far if (abs (c - u) > 0.5*(b - a)) c = 0.5 * (b + a); endif itype = 5; case 5 # bisection step c = 0.5 * (b + a); itype = 2; endswitch # don't let c come too close to a or b delta = 2*0.7*(2 * abs (u) * eps + tolx); if ((b - a) <= 2*delta) c = (a + b)/2; else c = max (a + delta, min (b - delta, c)); endif # calculate new point x = c; fval = fc = fun (c); niter ++; nfev ++; # modification 2: skip inverse cubic interpolation if nonmonotonicity is # detected if (sign (fc - fa) * sign (fc - fb) >= 0) # the new point broke monotonicity. # disable inverse cubic fe = fc; else e = d; fe = fd; endif # bracketing if (sign (fa) * sign (fc) < 0) d = b; fd = fb; b = c; fb = fc; elseif (sign (fb) * sign (fc) < 0) d = a; fd = fa; a = c; fa = fc; elseif (fc == 0) a = b = c; fa = fb = fc; info = 1; break; else # this should never happen. #error ("fzero:bracket", "fzero: zero point is not bracketed"); endif # if there's an output function, use it now if (outfcn) optv.funccount = niter + 2; optv.fval = fval; optv.iteration = niter; if (outfcn (x, optv, "iter")) info = -1; break; endif endif if (abs (fa) < abs (fb)) u = a; fu = fa; else u = b; fu = fb; endif if (b - a <= 2*(2 * abs (u) * eps + tolx)) info = 1; break; endif # skip bisection step if successful reduction if (itype == 5 && (b - a) <= mba) itype = 2; endif if (itype == 2) mba = mu * (b - a); endif endwhile output.iterations = niter; output.funcCount = niter + 2; output.bracket = [a, b]; output.bracketf = [fa, fb]; endfunction # an assistant function that evaluates a function handle and checks for bad # results. function fx = guarded_eval (fun, x) fx = fun (x); fx = fx(1); if (! isreal (fx)) error ("fzero:notreal", "fzero: non-real value encountered"); elseif (isnan (fx)) error ("fzero:isnan", "fzero: NaN value encountered"); endif endfunction %!assert(fzero(@cos, [0, 3]), pi/2, 10*eps) %!assert(fzero(@(x) x^(1/3) - 1e-8, [0,1]), 1e-24, 1e-22*eps)