Mercurial > hg > octave-lyh
view src/givens.cc @ 712:36ba0576bd1b
[project @ 1994-09-19 14:18:15 by jwe]
author | jwe |
---|---|
date | Mon, 19 Sep 1994 14:18:48 +0000 |
parents | 0a81458ef677 |
children | dfe01093f657 |
line wrap: on
line source
// f-givens.cc -*- C++ -*- /* Copyright (C) 1993, 1994 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ // Written by A. S. Hodel <scotte@eng.auburn.edu> #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "dMatrix.h" #include "CMatrix.h" #include "f77-uscore.h" #include "tree-const.h" #include "user-prefs.h" #include "error.h" #include "gripes.h" #include "help.h" #include "defun-dld.h" extern "C" { int F77_FCN (dlartg) (const double*, const double*, double*, double*, double*); int F77_FCN (zlartg) (const Complex*, const Complex*, double*, Complex*, Complex*); } DEFUN_DLD_BUILTIN ("givens", Fgivens, Sgivens, 3, 2, "G = givens (X, Y)\n\ \n\ compute orthogonal matrix G = [c s; -conj (s) c]\n\ such that G [x; y] = [*; 0] (x, y scalars)\n\ \n\ [c, s] = givens (x, y) returns the (c, s) values themselves.") { Octave_object retval; int nargin = args.length (); if (nargin != 2 || nargout > 2) { print_usage ("givens"); return retval; } tree_constant arg_a = args(0); tree_constant arg_b = args(1); if (! arg_a.is_scalar_type () && arg_b.is_scalar_type ()) { error("givens: requires two scalar arguments"); return retval; } Complex cx, cy; double x, y; if (arg_a.is_complex_type ()) { cx = arg_a.complex_value (); if (error_state) return retval; } else { x = arg_a.double_value (); if (error_state) return retval; cx = x; // copy to complex just in case } if (arg_b.is_complex_type ()) { cy = arg_b.complex_value (); if (error_state) return retval; } else { y = arg_b.double_value (); if (error_state) return retval; cy = y; // copy to complex just in case } // Now compute the rotation. double cc; if (arg_a.is_complex_type () || arg_b.is_complex_type ()) { Complex cs, temp_r; F77_FCN (zlartg) (&cx, &cy, &cc, &cs, &temp_r); switch (nargout) { case 0: // output a matrix case 1: { ComplexMatrix g (2, 2); g.elem (0, 0) = cc; g.elem (1, 1) = cc; g.elem (0, 1) = cs; g.elem (1, 0) = -conj (cs); retval(0) = g; } break; case 2: // output scalar values retval(0) = cc; retval(1) = cs; break; default: error ("givens: invalid number of output arguments"); break; } } else { double s, temp_r; F77_FCN (dlartg) (&x, &y, &cc, &s, &temp_r); switch (nargout) { case 0: // output a matrix case 1: { Matrix g (2, 2); g.elem (0, 0) = cc; g.elem (1, 1) = cc; g.elem (0, 1) = s; g.elem (1, 0) = -s; retval(0) = g; } break; case 2: // output scalar values retval(0) = cc; retval(1) = s; break; default: error ("givens: invalid number of output arguments"); break; } } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */