Mercurial > hg > octave-lyh
view liboctave/CColVector.cc @ 14846:460a3c6d8bf1
maint: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists.
Example: func() => func ()
* dynamic.txi, func.txi, oop.txi, var.txi, embedded.cc, fortdemo.cc,
funcdemo.cc, paramdemo.cc, stringdemo.cc, unwinddemo.cc, Array.cc, Array.h,
CColVector.cc, CDiagMatrix.h, CMatrix.cc, CNDArray.cc, CRowVector.cc,
CSparse.cc, CmplxGEPBAL.cc, EIG.cc, MSparse.cc, MatrixType.cc,
Sparse-op-defs.h, Sparse-perm-op-defs.h, Sparse.cc, Sparse.h,
SparseCmplxCHOL.cc, SparseCmplxCHOL.h, SparseCmplxLU.cc, SparseCmplxQR.cc,
SparseCmplxQR.h, SparseQR.cc, SparseQR.h, SparsedbleCHOL.cc, SparsedbleCHOL.h,
SparsedbleLU.cc, SparsedbleLU.h, base-lu.cc, cmd-hist.cc, dColVector.cc,
dDiagMatrix.h, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dbleCHOL.cc,
dbleGEPBAL.cc, dim-vector.cc, eigs-base.cc, f2c-main.c, fCColVector.cc,
fCDiagMatrix.h, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fCmplxGEPBAL.cc,
fColVector.cc, fDiagMatrix.h, fEIG.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc,
file-ops.cc, file-stat.cc, floatCHOL.cc, floatGEPBAL.cc, idx-vector.h,
lo-specfun.cc, lo-sysdep.cc, mx-inlines.cc, oct-binmap.h, oct-convn.cc,
oct-md5.cc, oct-mem.h, oct-rand.cc, oct-syscalls.cc, randgamma.c, randmtzig.c,
sparse-base-chol.cc, sparse-base-chol.h, sparse-base-lu.cc, sparse-dmsolve.cc,
tempname.c, curl.m, divergence.m, randi.m, dlmwrite.m, edit.m, getappdata.m,
what.m, getarchdir.m, install.m, installed_packages.m, repackage.m,
unload_packages.m, colorbar.m, figure.m, isosurface.m, legend.m, loglog.m,
plot.m, plot3.m, plotyy.m, polar.m, __errplot__.m, __ghostscript__.m,
__marching_cube__.m, __plt__.m, __scatter__.m, semilogx.m, semilogy.m,
trimesh.m, trisurf.m, demo.m, test.m, datetick.m, __delaunayn__.cc,
__dsearchn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc,
__lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, balance.cc,
bsxfun.cc, ccolamd.cc, cellfun.cc, chol.cc, daspk.cc, dasrt.cc, dassl.cc,
dmperm.cc, eig.cc, eigs.cc, fftw.cc, filter.cc, find.cc, kron.cc, lookup.cc,
lsode.cc, matrix_type.cc, md5sum.cc, mgorth.cc, qr.cc, quad.cc, rand.cc,
regexp.cc, symbfact.cc, tril.cc, urlwrite.cc, op-bm-bm.cc, op-cdm-cdm.cc,
op-cell.cc, op-chm.cc, op-cm-cm.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-scm.cc,
op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-fcdm-fcdm.cc,
op-fcm-fcm.cc, op-fdm-fdm.cc, op-fm-fm.cc, op-int.h, op-m-m.cc, op-m-scm.cc,
op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-scm.cc,
op-s-sm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc,
op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc,
op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-str.cc, op-struct.cc, bitfcns.cc,
data.cc, debug.cc, dynamic-ld.cc, error.cc, gl-render.cc, graphics.cc,
graphics.in.h, load-path.cc, ls-hdf5.cc, ls-mat5.cc, ls-mat5.h,
ls-oct-ascii.cc, ls-oct-ascii.h, mex.cc, mk-errno-list, oct-map.cc, oct-obj.h,
oct-parse.yy, octave-config.in.cc, ov-base-int.cc, ov-base-mat.cc, ov-base.cc,
ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc,
ov-class.h, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-flt-cx-mat.cc,
ov-flt-re-mat.cc, ov-intx.h, ov-range.h, ov-re-mat.cc, ov-re-sparse.cc,
ov-str-mat.cc, ov-struct.cc, ov-usr-fcn.h, ov.h, pr-output.cc, pt-id.cc,
pt-id.h, pt-mat.cc, pt-select.cc, sparse.cc, symtab.cc, symtab.h, syscalls.cc,
toplev.cc, txt-eng-ft.cc, variables.cc, zfstream.cc, zfstream.h, Dork.m,
getStash.m, myStash.m, Gork.m, Pork.m, myStash.m, getStash.m, myStash.m,
getStash.m, myStash.m, fntests.m: Use Octave coding convention for
cuddled parenthis in function calls with empty argument lists.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 08 Jul 2012 11:28:50 -0700 |
parents | ed8c4921bf61 |
children |
line wrap: on
line source
// ColumnVector manipulations. /* Copyright (C) 1994-2012 John W. Eaton Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "Array-util.h" #include "f77-fcn.h" #include "functor.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (zgemv, ZGEMV) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const Complex&, const Complex*, const octave_idx_type&, const Complex*, const octave_idx_type&, const Complex&, Complex*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL); } // Complex Column Vector class ComplexColumnVector::ComplexColumnVector (const ColumnVector& a) : MArray<Complex> (a) { } bool ComplexColumnVector::operator == (const ComplexColumnVector& a) const { octave_idx_type len = length (); if (len != a.length ()) return 0; return mx_inline_equal (len, data (), a.data ()); } bool ComplexColumnVector::operator != (const ComplexColumnVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations ComplexColumnVector& ComplexColumnVector::insert (const ColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } ComplexColumnVector& ComplexColumnVector::insert (const ComplexColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } ComplexColumnVector& ComplexColumnVector::fill (double val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } ComplexColumnVector& ComplexColumnVector::fill (const Complex& val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } ComplexColumnVector ComplexColumnVector::stack (const ColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexColumnVector ComplexColumnVector::stack (const ComplexColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; ComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } ComplexRowVector ComplexColumnVector::hermitian (void) const { return MArray<Complex>::hermitian (std::conj); } ComplexRowVector ComplexColumnVector::transpose (void) const { return MArray<Complex>::transpose (); } ColumnVector ComplexColumnVector::abs (void) const { return do_mx_unary_map<double, Complex, std::abs> (*this); } ComplexColumnVector conj (const ComplexColumnVector& a) { return do_mx_unary_map<Complex, Complex, std::conj<double> > (a); } // resize is the destructive equivalent for this one ComplexColumnVector ComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const { if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } octave_idx_type new_r = r2 - r1 + 1; ComplexColumnVector result (new_r); for (octave_idx_type i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } ComplexColumnVector ComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const { ComplexColumnVector result (n); for (octave_idx_type i = 0; i < n; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations ComplexColumnVector& ComplexColumnVector::operator += (const ColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_add2 (len, d, a.data ()); return *this; } ComplexColumnVector& ComplexColumnVector::operator -= (const ColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; Complex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_sub2 (len, d, a.data ()); return *this; } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const ComplexMatrix& m, const ColumnVector& a) { ComplexColumnVector tmp (a); return m * tmp; } ComplexColumnVector operator * (const ComplexMatrix& m, const ComplexColumnVector& a) { ComplexColumnVector retval; octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) gripe_nonconformant ("operator *", nr, nc, a_len, 1); else { retval.clear (nr); if (nr != 0) { if (nc == 0) retval.fill (0.0); else { Complex *y = retval.fortran_vec (); F77_XFCN (zgemv, ZGEMV, (F77_CONST_CHAR_ARG2 ("N", 1), nr, nc, 1.0, m.data (), nr, a.data (), 1, 0.0, y, 1 F77_CHAR_ARG_LEN (1))); } } } return retval; } // matrix by column vector -> column vector operations ComplexColumnVector operator * (const Matrix& m, const ComplexColumnVector& a) { ComplexMatrix tmp (m); return tmp * a; } // diagonal matrix by column vector -> column vector operations ComplexColumnVector operator * (const DiagMatrix& m, const ComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } ComplexColumnVector operator * (const ComplexDiagMatrix& m, const ComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return ComplexColumnVector (); } if (nc == 0 || nr == 0) return ComplexColumnVector (0); ComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // other operations Complex ComplexColumnVector::min (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) < absres) { res = elem (i); absres = std::abs (res); } return res; } Complex ComplexColumnVector::max (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; Complex res = elem (0); double absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) > absres) { res = elem (i); absres = std::abs (res); } return res; } // i/o std::ostream& operator << (std::ostream& os, const ComplexColumnVector& a) { // int field_width = os.precision () + 7; for (octave_idx_type i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } std::istream& operator >> (std::istream& is, ComplexColumnVector& a) { octave_idx_type len = a.length (); if (len > 0) { double tmp; for (octave_idx_type i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; }