Mercurial > hg > octave-lyh
view liboctave/SparseCmplxLU.cc @ 14846:460a3c6d8bf1
maint: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists.
Example: func() => func ()
* dynamic.txi, func.txi, oop.txi, var.txi, embedded.cc, fortdemo.cc,
funcdemo.cc, paramdemo.cc, stringdemo.cc, unwinddemo.cc, Array.cc, Array.h,
CColVector.cc, CDiagMatrix.h, CMatrix.cc, CNDArray.cc, CRowVector.cc,
CSparse.cc, CmplxGEPBAL.cc, EIG.cc, MSparse.cc, MatrixType.cc,
Sparse-op-defs.h, Sparse-perm-op-defs.h, Sparse.cc, Sparse.h,
SparseCmplxCHOL.cc, SparseCmplxCHOL.h, SparseCmplxLU.cc, SparseCmplxQR.cc,
SparseCmplxQR.h, SparseQR.cc, SparseQR.h, SparsedbleCHOL.cc, SparsedbleCHOL.h,
SparsedbleLU.cc, SparsedbleLU.h, base-lu.cc, cmd-hist.cc, dColVector.cc,
dDiagMatrix.h, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dbleCHOL.cc,
dbleGEPBAL.cc, dim-vector.cc, eigs-base.cc, f2c-main.c, fCColVector.cc,
fCDiagMatrix.h, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fCmplxGEPBAL.cc,
fColVector.cc, fDiagMatrix.h, fEIG.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc,
file-ops.cc, file-stat.cc, floatCHOL.cc, floatGEPBAL.cc, idx-vector.h,
lo-specfun.cc, lo-sysdep.cc, mx-inlines.cc, oct-binmap.h, oct-convn.cc,
oct-md5.cc, oct-mem.h, oct-rand.cc, oct-syscalls.cc, randgamma.c, randmtzig.c,
sparse-base-chol.cc, sparse-base-chol.h, sparse-base-lu.cc, sparse-dmsolve.cc,
tempname.c, curl.m, divergence.m, randi.m, dlmwrite.m, edit.m, getappdata.m,
what.m, getarchdir.m, install.m, installed_packages.m, repackage.m,
unload_packages.m, colorbar.m, figure.m, isosurface.m, legend.m, loglog.m,
plot.m, plot3.m, plotyy.m, polar.m, __errplot__.m, __ghostscript__.m,
__marching_cube__.m, __plt__.m, __scatter__.m, semilogx.m, semilogy.m,
trimesh.m, trisurf.m, demo.m, test.m, datetick.m, __delaunayn__.cc,
__dsearchn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc,
__lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, balance.cc,
bsxfun.cc, ccolamd.cc, cellfun.cc, chol.cc, daspk.cc, dasrt.cc, dassl.cc,
dmperm.cc, eig.cc, eigs.cc, fftw.cc, filter.cc, find.cc, kron.cc, lookup.cc,
lsode.cc, matrix_type.cc, md5sum.cc, mgorth.cc, qr.cc, quad.cc, rand.cc,
regexp.cc, symbfact.cc, tril.cc, urlwrite.cc, op-bm-bm.cc, op-cdm-cdm.cc,
op-cell.cc, op-chm.cc, op-cm-cm.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-scm.cc,
op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-fcdm-fcdm.cc,
op-fcm-fcm.cc, op-fdm-fdm.cc, op-fm-fm.cc, op-int.h, op-m-m.cc, op-m-scm.cc,
op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-scm.cc,
op-s-sm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc,
op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc,
op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-str.cc, op-struct.cc, bitfcns.cc,
data.cc, debug.cc, dynamic-ld.cc, error.cc, gl-render.cc, graphics.cc,
graphics.in.h, load-path.cc, ls-hdf5.cc, ls-mat5.cc, ls-mat5.h,
ls-oct-ascii.cc, ls-oct-ascii.h, mex.cc, mk-errno-list, oct-map.cc, oct-obj.h,
oct-parse.yy, octave-config.in.cc, ov-base-int.cc, ov-base-mat.cc, ov-base.cc,
ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc,
ov-class.h, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-flt-cx-mat.cc,
ov-flt-re-mat.cc, ov-intx.h, ov-range.h, ov-re-mat.cc, ov-re-sparse.cc,
ov-str-mat.cc, ov-struct.cc, ov-usr-fcn.h, ov.h, pr-output.cc, pt-id.cc,
pt-id.h, pt-mat.cc, pt-select.cc, sparse.cc, symtab.cc, symtab.h, syscalls.cc,
toplev.cc, txt-eng-ft.cc, variables.cc, zfstream.cc, zfstream.h, Dork.m,
getStash.m, myStash.m, Gork.m, Pork.m, myStash.m, getStash.m, myStash.m,
getStash.m, myStash.m, fntests.m: Use Octave coding convention for
cuddled parenthis in function calls with empty argument lists.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 08 Jul 2012 11:28:50 -0700 |
parents | 72c96de7a403 |
children | 3d8ace26c5b4 |
line wrap: on
line source
/* Copyright (C) 2004-2012 David Bateman Copyright (C) 1998-2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <vector> #include "lo-error.h" #include "oct-locbuf.h" #include "SparseCmplxLU.h" #include "oct-spparms.h" // Instantiate the base LU class for the types we need. #include "sparse-base-lu.h" #include "sparse-base-lu.cc" template class sparse_base_lu <SparseComplexMatrix, Complex, SparseMatrix, double>; #include "oct-sparse.h" SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, const Matrix& piv_thres, bool scale) { #ifdef HAVE_UMFPACK octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); // Setup the control parameters Matrix Control (UMFPACK_CONTROL, 1); double *control = Control.fortran_vec (); UMFPACK_ZNAME (defaults) (control); double tmp = octave_sparse_params::get_key ("spumoni"); if (!xisnan (tmp)) Control (UMFPACK_PRL) = tmp; if (piv_thres.nelem () == 2) { tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0)); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1)); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } else { tmp = octave_sparse_params::get_key ("piv_tol"); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = octave_sparse_params::get_key ("sym_tol"); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } // Set whether we are allowed to modify Q or not tmp = octave_sparse_params::get_key ("autoamd"); if (!xisnan (tmp)) Control (UMFPACK_FIXQ) = tmp; // Turn-off UMFPACK scaling for LU if (scale) Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM; else Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE; UMFPACK_ZNAME (report_control) (control); const octave_idx_type *Ap = a.cidx (); const octave_idx_type *Ai = a.ridx (); const Complex *Ax = a.data (); UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 1, control); void *Symbolic; Matrix Info (1, UMFPACK_INFO); double *info = Info.fortran_vec (); int status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 0, &Symbolic, control, info); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU symbolic factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; } else { UMFPACK_ZNAME (report_symbolic) (Symbolic, control); void *Numeric; status = UMFPACK_ZNAME (numeric) (Ap, Ai, reinterpret_cast<const double *> (Ax), 0, Symbolic, &Numeric, control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; cond = Info (UMFPACK_RCOND); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU numeric factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { UMFPACK_ZNAME (report_numeric) (Numeric, control); octave_idx_type lnz, unz, ignore1, ignore2, ignore3; status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz, &ignore1, &ignore2, &ignore3, Numeric) ; if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { octave_idx_type n_inner = (nr < nc ? nr : nc); if (lnz < 1) Lfact = SparseComplexMatrix (n_inner, nr, static_cast<octave_idx_type> (1)); else Lfact = SparseComplexMatrix (n_inner, nr, lnz); octave_idx_type *Ltp = Lfact.cidx (); octave_idx_type *Ltj = Lfact.ridx (); Complex *Ltx = Lfact.data (); if (unz < 1) Ufact = SparseComplexMatrix (n_inner, nc, static_cast<octave_idx_type> (1)); else Ufact = SparseComplexMatrix (n_inner, nc, unz); octave_idx_type *Up = Ufact.cidx (); octave_idx_type *Uj = Ufact.ridx (); Complex *Ux = Ufact.data (); Rfact = SparseMatrix (nr, nr, nr); for (octave_idx_type i = 0; i < nr; i++) { Rfact.xridx (i) = i; Rfact.xcidx (i) = i; } Rfact.xcidx (nr) = nr; double *Rx = Rfact.data (); P.resize (dim_vector (nr, 1)); octave_idx_type *p = P.fortran_vec (); Q.resize (dim_vector (nc, 1)); octave_idx_type *q = Q.fortran_vec (); octave_idx_type do_recip; status = UMFPACK_ZNAME (get_numeric) (Ltp, Ltj, reinterpret_cast<double *> (Ltx), 0, Up, Uj, reinterpret_cast <double *> (Ux), 0, p, q, 0, 0, &do_recip, Rx, Numeric); UMFPACK_ZNAME (free_numeric) (&Numeric) ; if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); } else { Lfact = Lfact.transpose (); if (do_recip) for (octave_idx_type i = 0; i < nr; i++) Rx[i] = 1.0 / Rx[i]; UMFPACK_ZNAME (report_matrix) (nr, n_inner, Lfact.cidx (), Lfact.ridx (), reinterpret_cast<double *> (Lfact.data ()), 0, 1, control); UMFPACK_ZNAME (report_matrix) (n_inner, nc, Ufact.cidx (), Ufact.ridx (), reinterpret_cast<double *> (Ufact.data ()), 0, 1, control); UMFPACK_ZNAME (report_perm) (nr, p, control); UMFPACK_ZNAME (report_perm) (nc, q, control); } UMFPACK_ZNAME (report_info) (control, info); } } } #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif } SparseComplexLU::SparseComplexLU (const SparseComplexMatrix& a, const ColumnVector& Qinit, const Matrix& piv_thres, bool scale, bool FixedQ, double droptol, bool milu, bool udiag) { #ifdef HAVE_UMFPACK if (milu) (*current_liboctave_error_handler) ("Modified incomplete LU not implemented"); else { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); // Setup the control parameters Matrix Control (UMFPACK_CONTROL, 1); double *control = Control.fortran_vec (); UMFPACK_ZNAME (defaults) (control); double tmp = octave_sparse_params::get_key ("spumoni"); if (!xisnan (tmp)) Control (UMFPACK_PRL) = tmp; if (piv_thres.nelem () == 2) { tmp = (piv_thres (0) > 1. ? 1. : piv_thres (0)); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = (piv_thres (1) > 1. ? 1. : piv_thres (1)); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } else { tmp = octave_sparse_params::get_key ("piv_tol"); if (!xisnan (tmp)) Control (UMFPACK_PIVOT_TOLERANCE) = tmp; tmp = octave_sparse_params::get_key ("sym_tol"); if (!xisnan (tmp)) Control (UMFPACK_SYM_PIVOT_TOLERANCE) = tmp; } if (droptol >= 0.) Control (UMFPACK_DROPTOL) = droptol; // Set whether we are allowed to modify Q or not if (FixedQ) Control (UMFPACK_FIXQ) = 1.0; else { tmp = octave_sparse_params::get_key ("autoamd"); if (!xisnan (tmp)) Control (UMFPACK_FIXQ) = tmp; } // Turn-off UMFPACK scaling for LU if (scale) Control (UMFPACK_SCALE) = UMFPACK_SCALE_SUM; else Control (UMFPACK_SCALE) = UMFPACK_SCALE_NONE; UMFPACK_ZNAME (report_control) (control); const octave_idx_type *Ap = a.cidx (); const octave_idx_type *Ai = a.ridx (); const Complex *Ax = a.data (); UMFPACK_ZNAME (report_matrix) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, 1, control); void *Symbolic; Matrix Info (1, UMFPACK_INFO); double *info = Info.fortran_vec (); int status; // Null loop so that qinit is imediately deallocated when not // needed do { OCTAVE_LOCAL_BUFFER (octave_idx_type, qinit, nc); for (octave_idx_type i = 0; i < nc; i++) qinit [i] = static_cast<octave_idx_type> (Qinit (i)); status = UMFPACK_ZNAME (qsymbolic) (nr, nc, Ap, Ai, reinterpret_cast<const double *> (Ax), 0, qinit, &Symbolic, control, info); } while (0); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU symbolic factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; } else { UMFPACK_ZNAME (report_symbolic) (Symbolic, control); void *Numeric; status = UMFPACK_ZNAME (numeric) (Ap, Ai, reinterpret_cast<const double *> (Ax), 0, Symbolic, &Numeric, control, info) ; UMFPACK_ZNAME (free_symbolic) (&Symbolic) ; cond = Info (UMFPACK_RCOND); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU numeric factorization failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { UMFPACK_ZNAME (report_numeric) (Numeric, control); octave_idx_type lnz, unz, ignore1, ignore2, ignore3; status = UMFPACK_ZNAME (get_lunz) (&lnz, &unz, &ignore1, &ignore2, &ignore3, Numeric); if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); UMFPACK_ZNAME (report_info) (control, info); UMFPACK_ZNAME (free_numeric) (&Numeric); } else { octave_idx_type n_inner = (nr < nc ? nr : nc); if (lnz < 1) Lfact = SparseComplexMatrix (n_inner, nr, static_cast<octave_idx_type> (1)); else Lfact = SparseComplexMatrix (n_inner, nr, lnz); octave_idx_type *Ltp = Lfact.cidx (); octave_idx_type *Ltj = Lfact.ridx (); Complex *Ltx = Lfact.data (); if (unz < 1) Ufact = SparseComplexMatrix (n_inner, nc, static_cast<octave_idx_type> (1)); else Ufact = SparseComplexMatrix (n_inner, nc, unz); octave_idx_type *Up = Ufact.cidx (); octave_idx_type *Uj = Ufact.ridx (); Complex *Ux = Ufact.data (); Rfact = SparseMatrix (nr, nr, nr); for (octave_idx_type i = 0; i < nr; i++) { Rfact.xridx (i) = i; Rfact.xcidx (i) = i; } Rfact.xcidx (nr) = nr; double *Rx = Rfact.data (); P.resize (dim_vector (nr, 1)); octave_idx_type *p = P.fortran_vec (); Q.resize (dim_vector (nc, 1)); octave_idx_type *q = Q.fortran_vec (); octave_idx_type do_recip; status = UMFPACK_ZNAME (get_numeric) (Ltp, Ltj, reinterpret_cast<double *> (Ltx), 0, Up, Uj, reinterpret_cast<double *> (Ux), 0, p, q, 0, 0, &do_recip, Rx, Numeric) ; UMFPACK_ZNAME (free_numeric) (&Numeric) ; if (status < 0) { (*current_liboctave_error_handler) ("SparseComplexLU::SparseComplexLU extracting LU factors failed"); UMFPACK_ZNAME (report_status) (control, status); } else { Lfact = Lfact.transpose (); if (do_recip) for (octave_idx_type i = 0; i < nr; i++) Rx[i] = 1.0 / Rx[i]; UMFPACK_ZNAME (report_matrix) (nr, n_inner, Lfact.cidx (), Lfact.ridx (), reinterpret_cast<double *> (Lfact.data ()), 0, 1, control); UMFPACK_ZNAME (report_matrix) (n_inner, nc, Ufact.cidx (), Ufact.ridx (), reinterpret_cast<double *> (Ufact.data ()), 0, 1, control); UMFPACK_ZNAME (report_perm) (nr, p, control); UMFPACK_ZNAME (report_perm) (nc, q, control); } UMFPACK_ZNAME (report_info) (control, info); } } } if (udiag) (*current_liboctave_error_handler) ("Option udiag of incomplete LU not implemented"); } #else (*current_liboctave_error_handler) ("UMFPACK not installed"); #endif }