view scripts/plot/private/__marching_cube__.m @ 14846:460a3c6d8bf1

maint: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists. Example: func() => func () * dynamic.txi, func.txi, oop.txi, var.txi, embedded.cc, fortdemo.cc, funcdemo.cc, paramdemo.cc, stringdemo.cc, unwinddemo.cc, Array.cc, Array.h, CColVector.cc, CDiagMatrix.h, CMatrix.cc, CNDArray.cc, CRowVector.cc, CSparse.cc, CmplxGEPBAL.cc, EIG.cc, MSparse.cc, MatrixType.cc, Sparse-op-defs.h, Sparse-perm-op-defs.h, Sparse.cc, Sparse.h, SparseCmplxCHOL.cc, SparseCmplxCHOL.h, SparseCmplxLU.cc, SparseCmplxQR.cc, SparseCmplxQR.h, SparseQR.cc, SparseQR.h, SparsedbleCHOL.cc, SparsedbleCHOL.h, SparsedbleLU.cc, SparsedbleLU.h, base-lu.cc, cmd-hist.cc, dColVector.cc, dDiagMatrix.h, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dbleCHOL.cc, dbleGEPBAL.cc, dim-vector.cc, eigs-base.cc, f2c-main.c, fCColVector.cc, fCDiagMatrix.h, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fCmplxGEPBAL.cc, fColVector.cc, fDiagMatrix.h, fEIG.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc, file-ops.cc, file-stat.cc, floatCHOL.cc, floatGEPBAL.cc, idx-vector.h, lo-specfun.cc, lo-sysdep.cc, mx-inlines.cc, oct-binmap.h, oct-convn.cc, oct-md5.cc, oct-mem.h, oct-rand.cc, oct-syscalls.cc, randgamma.c, randmtzig.c, sparse-base-chol.cc, sparse-base-chol.h, sparse-base-lu.cc, sparse-dmsolve.cc, tempname.c, curl.m, divergence.m, randi.m, dlmwrite.m, edit.m, getappdata.m, what.m, getarchdir.m, install.m, installed_packages.m, repackage.m, unload_packages.m, colorbar.m, figure.m, isosurface.m, legend.m, loglog.m, plot.m, plot3.m, plotyy.m, polar.m, __errplot__.m, __ghostscript__.m, __marching_cube__.m, __plt__.m, __scatter__.m, semilogx.m, semilogy.m, trimesh.m, trisurf.m, demo.m, test.m, datetick.m, __delaunayn__.cc, __dsearchn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc, __lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, balance.cc, bsxfun.cc, ccolamd.cc, cellfun.cc, chol.cc, daspk.cc, dasrt.cc, dassl.cc, dmperm.cc, eig.cc, eigs.cc, fftw.cc, filter.cc, find.cc, kron.cc, lookup.cc, lsode.cc, matrix_type.cc, md5sum.cc, mgorth.cc, qr.cc, quad.cc, rand.cc, regexp.cc, symbfact.cc, tril.cc, urlwrite.cc, op-bm-bm.cc, op-cdm-cdm.cc, op-cell.cc, op-chm.cc, op-cm-cm.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-scm.cc, op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-fcdm-fcdm.cc, op-fcm-fcm.cc, op-fdm-fdm.cc, op-fm-fm.cc, op-int.h, op-m-m.cc, op-m-scm.cc, op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-scm.cc, op-s-sm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc, op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc, op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-str.cc, op-struct.cc, bitfcns.cc, data.cc, debug.cc, dynamic-ld.cc, error.cc, gl-render.cc, graphics.cc, graphics.in.h, load-path.cc, ls-hdf5.cc, ls-mat5.cc, ls-mat5.h, ls-oct-ascii.cc, ls-oct-ascii.h, mex.cc, mk-errno-list, oct-map.cc, oct-obj.h, oct-parse.yy, octave-config.in.cc, ov-base-int.cc, ov-base-mat.cc, ov-base.cc, ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc, ov-class.h, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-flt-cx-mat.cc, ov-flt-re-mat.cc, ov-intx.h, ov-range.h, ov-re-mat.cc, ov-re-sparse.cc, ov-str-mat.cc, ov-struct.cc, ov-usr-fcn.h, ov.h, pr-output.cc, pt-id.cc, pt-id.h, pt-mat.cc, pt-select.cc, sparse.cc, symtab.cc, symtab.h, syscalls.cc, toplev.cc, txt-eng-ft.cc, variables.cc, zfstream.cc, zfstream.h, Dork.m, getStash.m, myStash.m, Gork.m, Pork.m, myStash.m, getStash.m, myStash.m, getStash.m, myStash.m, fntests.m: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists.
author Rik <octave@nomad.inbox5.com>
date Sun, 08 Jul 2012 11:28:50 -0700
parents 4d917a6a858b
children 5d3a684236b0
line wrap: on
line source

## Copyright (C) 2009-2012 Martin Helm
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{t}, @var{p}] =} __marching_cube__ (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso})
## @deftypefnx {Function File} {[@var{t}, @var{p}, @var{c}] =} __marching_cube__ (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso}, @var{col})
## Undocumented internal function.
## @end deftypefn

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{t}, @var{p}] =} __marching_cube__ (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso})
## @deftypefnx {Function File} {[@var{t}, @var{p}, @var{c}] =} __marching_cube__ (@var{x}, @var{y}, @var{z}, @var{val}, @var{iso}, @var{col})
##
## Return the triangulation information @var{t} at points @var{p} for
## the isosurface values resp. the volume data @var{val} and the iso
## level @var{iso}.  It is considered that the volume data @var{val} is
## given at the points @var{x}, @var{y} and @var{z} which are of type
## three--dimensional numeric arrays.  The orientation of the triangles
## is choosen such that the normals point from the higher values to the
## lower values.
##
## Optionally the color data @var{col} can be passed to this function
## whereas computed vertices color data @var{c} is returned as third
## argument.
##
## The marching cube algorithm is well known and described, for example, at
## Wikipedia.  The triangulation lookup table and the edge table used
## here are based on Cory Gene Bloyd's implementation and can be found
## beyond other surface and geometry stuff at Paul Bourke's website
## @uref{http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise}.
##
## For example:
##
## @example
## @group
## N = 20;
## lin = linspace (0, 2, N);
## [x, y, z] = meshgrid (lin, lin, lin);
##
## c = (x-.5).^2 + (y-.5).^2 + (z-.5).^2;
## [t, p] = __marching_cube__ (x, y, z, c, .5);
##
## figure ();
## trimesh (t, p(:,1), p(:,2), p(:,3));
## @end group
## @end example
##
## Instead of the @command{trimesh} function the @command{patch}
## function can be used to visualize the geometry.  For example:
##
## @example
## @group
## figure (); view (-38, 20);
## pa = patch ("Faces", t, "Vertices", p, "FaceVertexCData", p, \
##             "FaceColor", "interp", "EdgeColor", "none");
##
## ## Revert normals
## set (pa, "VertexNormals", -get (pa, "VertexNormals"));
##
## ## Set lightning (available with the JHandles package)
## # set (pa, "FaceLighting", "gouraud");
## # light ( "Position", [1 1 5]);
## @end group
## @end example
##
## @end deftypefn

## Author: Martin Helm <martin@mhelm.de>

function [T, p, col] = __marching_cube__ (xx, yy, zz, c, iso, colors)

  persistent edge_table=[];
  persistent tri_table=[];

  calc_cols = false;
  lindex = 4;

  if (isempty (tri_table) || isempty (edge_table))
    [edge_table, tri_table] = init_mc ();
  endif

  if ((nargin != 5 && nargin != 6) || (nargout != 2 && nargout != 3))
    print_usage ();
  endif

  if (!ismatrix (xx) || !ismatrix (yy) || !ismatrix (zz) || !ismatrix (c) || ...
    ndims (xx) != 3 || ndims (yy) != 3 || ndims (zz) != 3 || ndims (c) != 3)
    error ("__marching_cube__: XX, YY, ZZ, C must be matrices of dim 3");
  endif

  if (!size_equal (xx, yy, zz, c))
    error ("__marching_cube__: XX, YY, ZZ, C must be of equal size");
  endif

  if (any (size (xx) < [2 2 2]))
    error ("__marching_cube__: grid size must be at least 2x2x2");
  endif

  if (!isscalar (iso))
    error ("__marching_cube__: ISO must be scalar value");
  endif

  if (nargin == 6)
    if ( !ismatrix (colors) || ndims (colors) != 3 || size (colors) != size (c) )
      error ( "COLORS must be a matrix of dim 3 and of same size as C" );
    endif
    calc_cols = true;
    lindex = 5;
  endif

  n = size (c) - 1;

  ## phase I: assign information to each voxel which edges are intersected by
  ## the isosurface
  cc = zeros (n(1), n(2), n(3), "uint16");
  cedge = zeros (size (cc), "uint16");

  vertex_idx = {1:n(1), 1:n(2), 1:n(3); ...
    2:n(1)+1, 1:n(2), 1:n(3); ...
    2:n(1)+1, 2:n(2)+1, 1:n(3); ...
    1:n(1), 2:n(2)+1, 1:n(3); ...
    1:n(1), 1:n(2), 2:n(3)+1; ...
    2:n(1)+1, 1:n(2), 2:n(3)+1; ...
    2:n(1)+1, 2:n(2)+1, 2:n(3)+1; ...
    1:n(1), 2:n(2)+1, 2:n(3)+1 };

  ## calculate which vertices have values higher than iso
  for ii=1:8
    idx = c(vertex_idx{ii, :}) > iso;
    cc(idx) = bitset (cc(idx), ii);
  endfor

  cedge = edge_table(cc+1); # assign the info about intersected edges
  id =  find (cedge); # select only voxels which are intersected
  if (isempty (id))
    T = p = col = [];
    return
  endif

  ## phase II: calculate the list of intersection points
  xyz_off = [1, 1, 1; 2, 1, 1; 2, 2, 1; 1, 2, 1; 1, 1, 2;  2, 1, 2; 2, 2, 2; 1, 2, 2];
  edges = [1 2; 2 3; 3 4; 4 1; 5 6; 6 7; 7 8; 8 5; 1 5; 2 6; 3 7; 4 8];
  offset = sub2ind (size (c), xyz_off(:, 1), xyz_off(:, 2), xyz_off(:, 3)) -1;
  pp = zeros (length (id), lindex, 12);
  ccedge = [vec(cedge(id)), id];
  ix_offset=0;
  for jj=1:12
    id__ = bitget (ccedge(:, 1), jj);
    id_ = ccedge(id__, 2);
    [ix iy iz] = ind2sub (size (cc), id_);
    id_c = sub2ind (size (c), ix, iy, iz);
    id1 = id_c + offset(edges(jj, 1));
    id2 = id_c + offset(edges(jj, 2));
    if (calc_cols)
      pp(id__, 1:5, jj) = [vertex_interp(iso, xx(id1), yy(id1), zz(id1), ...
        xx(id2), yy(id2), zz(id2), c(id1), c(id2), colors(id1), colors(id2)), ...
        (1:size (id_, 1))' + ix_offset ];
    else
      pp(id__, 1:4, jj) = [vertex_interp(iso, xx(id1), yy(id1), zz(id1), ...
        xx(id2), yy(id2), zz(id2), c(id1), c(id2)), ...
        (1:size (id_, 1))' + ix_offset ];
    endif
    ix_offset += size (id_, 1);
  endfor

  ## phase III: calculate the triangulation from the point list
  T = [];
  tri = tri_table(cc(id)+1, :);
  for jj=1:3:15
    id_ = find (tri(:, jj)>0);
    p = [id_, lindex*ones(size (id_, 1), 1),tri(id_, jj:jj+2)];
    if (!isempty (p))
      p1 = sub2ind (size (pp), p(:,1), p(:,2), p(:,3));
      p2 = sub2ind (size (pp), p(:,1), p(:,2), p(:,4));
      p3 = sub2ind (size (pp), p(:,1), p(:,2), p(:,5));
      T = [T; pp(p1), pp(p2), pp(p3)];
    endif
  endfor

  p = [];
  col = [];
  for jj = 1:12
    idp = pp(:, lindex, jj) > 0;
    if (any (idp))
      p(pp(idp, lindex, jj), 1:3) = pp(idp, 1:3, jj);
      if (calc_cols)
        col(pp(idp, lindex, jj),1) = pp(idp, 4, jj);
      endif
    endif
  endfor
endfunction

function p = vertex_interp(isolevel,p1x, p1y, p1z,...
  p2x, p2y, p2z,valp1,valp2, col1, col2)

  if (nargin == 9)
    p = zeros (length (p1x), 3);
  elseif (nargin == 11)
    p = zeros (length (p1x), 4);
  else
    error ("__marching_cube__: wrong number of arguments");
  endif
  mu = zeros (length (p1x), 1);
  id = abs (valp1-valp2) < (10*eps) .* (abs (valp1) .+ abs (valp2));
  if (any (id))
    p(id, 1:3) = [ p1x(id), p1y(id), p1z(id) ];
    if (nargin == 11)
      p(id, 4) = col1(id);
    endif
  endif
  nid = !id;
  if (any (nid))
    mu(nid) = (isolevel - valp1(nid)) ./ (valp2(nid) - valp1(nid));
    p(nid, 1:3) = [p1x(nid) + mu(nid) .* (p2x(nid) - p1x(nid)), ...
      p1y(nid) + mu(nid) .* (p2y(nid) - p1y(nid)), ...
      p1z(nid) + mu(nid) .* (p2z(nid) - p1z(nid))];
    if (nargin == 11)
      p(nid, 4) = col1(nid) + mu(nid) .* (col2(nid) - col1(nid));
    endif
  endif
endfunction

function [edge_table, tri_table] = init_mc ()
  edge_table = [
  0x0  , 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, ...
  0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, ...
  0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, ...
  0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, ...
  0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c, ...
  0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, ...
  0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac, ...
  0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, ...
  0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c, ...
  0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, ...
  0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc, ...
  0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, ...
  0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c, ...
  0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, ...
  0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc , ...
  0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, ...
  0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, ...
  0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, ...
  0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, ...
  0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, ...
  0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, ...
  0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, ...
  0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, ...
  0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460, ...
  0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, ...
  0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0, ...
  0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, ...
  0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230, ...
  0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, ...
  0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190, ...
  0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, ...
  0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x0   ];

  tri_table =[
  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1;
  3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1;
  3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1;
  3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1;
  9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1;
  9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1;
  2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1;
  8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1;
  9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1;
  4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1;
  3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1;
  1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1;
  4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1;
  4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1;
  9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1;
  5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1;
  2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1;
  9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1;
  0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1;
  2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1;
  10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1;
  4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1;
  5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1;
  5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1;
  9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1;
  0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1;
  1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1;
  10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1;
  8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1;
  2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1;
  7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1;
  9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1;
  2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1;
  11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1;
  9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1;
  5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1;
  11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1;
  11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1;
  1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1;
  9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1;
  5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1;
  2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1;
  0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1;
  5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1;
  6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1;
  3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1;
  6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1;
  5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1;
  1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1;
  10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1;
  6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1;
  8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1;
  7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1;
  3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1;
  5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1;
  0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1;
  9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1;
  8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1;
  5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1;
  0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1;
  6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1;
  10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1;
  10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1;
  8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1;
  1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1;
  3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1;
  0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1;
  10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1;
  3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1;
  6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1;
  9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1;
  8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1;
  3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1;
  6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1;
  0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1;
  10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1;
  10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1;
  2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1;
  7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1;
  7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1;
  2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1;
  1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1;
  11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1;
  8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1;
  0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1;
  7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1;
  10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1;
  2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1;
  6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1;
  7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1;
  2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1;
  1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1;
  10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1;
  10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1;
  0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1;
  7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1;
  6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1;
  8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1;
  9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1;
  6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1;
  4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1;
  10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1;
  8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1;
  0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1;
  1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1;
  8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1;
  10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1;
  4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1;
  10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1;
  5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1;
  11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1;
  9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1;
  6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1;
  7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1;
  3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1;
  7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1;
  9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1;
  3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1;
  6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1;
  9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1;
  1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1;
  4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1;
  7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1;
  6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1;
  3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1;
  0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1;
  6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1;
  0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1;
  11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1;
  6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1;
  5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1;
  9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1;
  1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1;
  1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1;
  10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1;
  0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1;
  5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1;
  10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1;
  11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1;
  9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1;
  7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1;
  2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1;
  8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1;
  9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1;
  9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1;
  1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1;
  9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1;
  9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1;
  5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1;
  0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1;
  10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1;
  2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1;
  0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1;
  0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1;
  9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1;
  5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1;
  3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1;
  5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1;
  8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1;
  0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1;
  9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1;
  0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1;
  1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1;
  3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1;
  4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1;
  9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1;
  11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1;
  11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1;
  2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1;
  9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1;
  3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1;
  1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1;
  4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1;
  4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1;
  0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1;
  3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1;
  3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1;
  0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1;
  9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1;
  1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1;
  -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ] + 1;
endfunction