Mercurial > hg > octave-lyh
view src/sparse-xdiv.cc @ 14846:460a3c6d8bf1
maint: Use Octave coding convention for cuddled parenthis in function calls with empty argument lists.
Example: func() => func ()
* dynamic.txi, func.txi, oop.txi, var.txi, embedded.cc, fortdemo.cc,
funcdemo.cc, paramdemo.cc, stringdemo.cc, unwinddemo.cc, Array.cc, Array.h,
CColVector.cc, CDiagMatrix.h, CMatrix.cc, CNDArray.cc, CRowVector.cc,
CSparse.cc, CmplxGEPBAL.cc, EIG.cc, MSparse.cc, MatrixType.cc,
Sparse-op-defs.h, Sparse-perm-op-defs.h, Sparse.cc, Sparse.h,
SparseCmplxCHOL.cc, SparseCmplxCHOL.h, SparseCmplxLU.cc, SparseCmplxQR.cc,
SparseCmplxQR.h, SparseQR.cc, SparseQR.h, SparsedbleCHOL.cc, SparsedbleCHOL.h,
SparsedbleLU.cc, SparsedbleLU.h, base-lu.cc, cmd-hist.cc, dColVector.cc,
dDiagMatrix.h, dMatrix.cc, dNDArray.cc, dRowVector.cc, dSparse.cc, dbleCHOL.cc,
dbleGEPBAL.cc, dim-vector.cc, eigs-base.cc, f2c-main.c, fCColVector.cc,
fCDiagMatrix.h, fCMatrix.cc, fCNDArray.cc, fCRowVector.cc, fCmplxGEPBAL.cc,
fColVector.cc, fDiagMatrix.h, fEIG.cc, fMatrix.cc, fNDArray.cc, fRowVector.cc,
file-ops.cc, file-stat.cc, floatCHOL.cc, floatGEPBAL.cc, idx-vector.h,
lo-specfun.cc, lo-sysdep.cc, mx-inlines.cc, oct-binmap.h, oct-convn.cc,
oct-md5.cc, oct-mem.h, oct-rand.cc, oct-syscalls.cc, randgamma.c, randmtzig.c,
sparse-base-chol.cc, sparse-base-chol.h, sparse-base-lu.cc, sparse-dmsolve.cc,
tempname.c, curl.m, divergence.m, randi.m, dlmwrite.m, edit.m, getappdata.m,
what.m, getarchdir.m, install.m, installed_packages.m, repackage.m,
unload_packages.m, colorbar.m, figure.m, isosurface.m, legend.m, loglog.m,
plot.m, plot3.m, plotyy.m, polar.m, __errplot__.m, __ghostscript__.m,
__marching_cube__.m, __plt__.m, __scatter__.m, semilogx.m, semilogy.m,
trimesh.m, trisurf.m, demo.m, test.m, datetick.m, __delaunayn__.cc,
__dsearchn__.cc, __fltk_uigetfile__.cc, __glpk__.cc, __init_fltk__.cc,
__lin_interpn__.cc, __magick_read__.cc, __pchip_deriv__.cc, balance.cc,
bsxfun.cc, ccolamd.cc, cellfun.cc, chol.cc, daspk.cc, dasrt.cc, dassl.cc,
dmperm.cc, eig.cc, eigs.cc, fftw.cc, filter.cc, find.cc, kron.cc, lookup.cc,
lsode.cc, matrix_type.cc, md5sum.cc, mgorth.cc, qr.cc, quad.cc, rand.cc,
regexp.cc, symbfact.cc, tril.cc, urlwrite.cc, op-bm-bm.cc, op-cdm-cdm.cc,
op-cell.cc, op-chm.cc, op-cm-cm.cc, op-cm-scm.cc, op-cm-sm.cc, op-cs-scm.cc,
op-cs-sm.cc, op-dm-dm.cc, op-dm-scm.cc, op-dm-sm.cc, op-fcdm-fcdm.cc,
op-fcm-fcm.cc, op-fdm-fdm.cc, op-fm-fm.cc, op-int.h, op-m-m.cc, op-m-scm.cc,
op-m-sm.cc, op-pm-pm.cc, op-pm-scm.cc, op-pm-sm.cc, op-range.cc, op-s-scm.cc,
op-s-sm.cc, op-sbm-sbm.cc, op-scm-cm.cc, op-scm-cs.cc, op-scm-m.cc,
op-scm-s.cc, op-scm-scm.cc, op-scm-sm.cc, op-sm-cm.cc, op-sm-cs.cc, op-sm-m.cc,
op-sm-s.cc, op-sm-scm.cc, op-sm-sm.cc, op-str-str.cc, op-struct.cc, bitfcns.cc,
data.cc, debug.cc, dynamic-ld.cc, error.cc, gl-render.cc, graphics.cc,
graphics.in.h, load-path.cc, ls-hdf5.cc, ls-mat5.cc, ls-mat5.h,
ls-oct-ascii.cc, ls-oct-ascii.h, mex.cc, mk-errno-list, oct-map.cc, oct-obj.h,
oct-parse.yy, octave-config.in.cc, ov-base-int.cc, ov-base-mat.cc, ov-base.cc,
ov-bool-mat.cc, ov-bool-sparse.cc, ov-bool.cc, ov-cell.cc, ov-class.cc,
ov-class.h, ov-cx-mat.cc, ov-cx-sparse.cc, ov-fcn-handle.cc, ov-flt-cx-mat.cc,
ov-flt-re-mat.cc, ov-intx.h, ov-range.h, ov-re-mat.cc, ov-re-sparse.cc,
ov-str-mat.cc, ov-struct.cc, ov-usr-fcn.h, ov.h, pr-output.cc, pt-id.cc,
pt-id.h, pt-mat.cc, pt-select.cc, sparse.cc, symtab.cc, symtab.h, syscalls.cc,
toplev.cc, txt-eng-ft.cc, variables.cc, zfstream.cc, zfstream.h, Dork.m,
getStash.m, myStash.m, Gork.m, Pork.m, myStash.m, getStash.m, myStash.m,
getStash.m, myStash.m, fntests.m: Use Octave coding convention for
cuddled parenthis in function calls with empty argument lists.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 08 Jul 2012 11:28:50 -0700 |
parents | 72c96de7a403 |
children | f7afecdd87ef |
line wrap: on
line source
/* Copyright (C) 2004-2012 David Bateman Copyright (C) 1998-2004 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cassert> #include "Array-util.h" #include "oct-cmplx.h" #include "quit.h" #include "error.h" #include "lo-ieee.h" #include "dSparse.h" #include "dDiagMatrix.h" #include "CSparse.h" #include "CDiagMatrix.h" #include "oct-spparms.h" #include "sparse-xdiv.h" static void solve_singularity_warning (double rcond) { warning ("matrix singular to machine precision, rcond = %g", rcond); warning ("attempting to find minimum norm solution"); } template <class T1, class T2> bool mx_leftdiv_conform (const T1& a, const T2& b) { octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); if (a_nr != b_nr) { octave_idx_type a_nc = a.cols (); octave_idx_type b_nc = b.cols (); gripe_nonconformant ("operator \\", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_LEFTDIV_CONFORM(T1, T2) \ template bool mx_leftdiv_conform (const T1&, const T2&) INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseMatrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, Matrix); INSTANTIATE_MX_LEFTDIV_CONFORM (SparseComplexMatrix, ComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (DiagMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (DiagMatrix, SparseComplexMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexDiagMatrix, SparseMatrix); INSTANTIATE_MX_LEFTDIV_CONFORM (ComplexDiagMatrix, SparseComplexMatrix); template <class T1, class T2> bool mx_div_conform (const T1& a, const T2& b) { octave_idx_type a_nc = a.cols (); octave_idx_type b_nc = b.cols (); if (a_nc != b_nc) { octave_idx_type a_nr = a.rows (); octave_idx_type b_nr = b.rows (); gripe_nonconformant ("operator /", a_nr, a_nc, b_nr, b_nc); return false; } return true; } #define INSTANTIATE_MX_DIV_CONFORM(T1, T2) \ template bool mx_div_conform (const T1&, const T2&) INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (Matrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseMatrix); INSTANTIATE_MX_DIV_CONFORM (ComplexMatrix, SparseComplexMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, DiagMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseMatrix, ComplexDiagMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, DiagMatrix); INSTANTIATE_MX_DIV_CONFORM (SparseComplexMatrix, ComplexDiagMatrix); // Right division functions. X / Y = X * inv(Y) = (inv (Y') * X')' // // Y / X: m cm sm scm // +-- +---+----+----+----+ // sparse matrix | 1 | 3 | 5 | 7 | // +---+----+----+----+ // sparse complex_matrix | 2 | 4 | 6 | 8 | // +---+----+----+----+ // diagonal matrix | 9 | 11 | // +----+----+ // complex diag. matrix | 10 | 12 | // +----+----+ // -*- 1 -*- Matrix xdiv (const Matrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return Matrix (); Matrix atmp = a.transpose (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; Matrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.transpose (); } // -*- 2 -*- ComplexMatrix xdiv (const Matrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); Matrix atmp = a.transpose (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 3 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); ComplexMatrix atmp = a.hermitian (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 4 -*- ComplexMatrix xdiv (const ComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return ComplexMatrix (); ComplexMatrix atmp = a.hermitian (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; ComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 5 -*- SparseMatrix xdiv (const SparseMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseMatrix (); SparseMatrix atmp = a.transpose (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.transpose (); } // -*- 6 -*- SparseComplexMatrix xdiv (const SparseMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseMatrix atmp = a.transpose (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 7 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseComplexMatrix atmp = a.hermitian (); SparseMatrix btmp = b.transpose (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } // -*- 8 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_div_conform (a, b)) return SparseComplexMatrix (); SparseComplexMatrix atmp = a.hermitian (); SparseComplexMatrix btmp = b.hermitian (); MatrixType btyp = typ.transpose (); octave_idx_type info; double rcond = 0.0; SparseComplexMatrix result = btmp.solve (btyp, atmp, info, rcond, solve_singularity_warning); typ = btyp.transpose (); return result.hermitian (); } template <typename RT, typename SM, typename DM> RT do_rightdiv_sm_dm (const SM& a, const DM& d) { const octave_idx_type d_nr = d.rows (); const octave_idx_type a_nr = a.rows (); const octave_idx_type a_nc = a.cols (); using std::min; const octave_idx_type nc = min (d_nr, a_nc); if ( ! mx_div_conform (a, d)) return RT (); const octave_idx_type nz = a.nnz (); RT r (a_nr, nc, nz); typedef typename DM::element_type DM_elt_type; const DM_elt_type zero = DM_elt_type (); octave_idx_type k_result = 0; for (octave_idx_type j = 0; j < nc; ++j) { octave_quit (); const DM_elt_type s = d.dgelem (j); const octave_idx_type colend = a.cidx (j+1); r.xcidx (j) = k_result; if (s != zero) for (octave_idx_type k = a.cidx (j); k < colend; ++k) { r.xdata (k_result) = a.data (k) / s; r.xridx (k_result) = a.ridx (k); ++k_result; } } r.xcidx (nc) = k_result; r.maybe_compress (true); return r; } // -*- 9 -*- SparseMatrix xdiv (const SparseMatrix& a, const DiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseMatrix> (a, b); } // -*- 10 -*- SparseComplexMatrix xdiv (const SparseMatrix& a, const ComplexDiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b); } // -*- 11 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const DiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b); } // -*- 12 -*- SparseComplexMatrix xdiv (const SparseComplexMatrix& a, const ComplexDiagMatrix& b, MatrixType &) { return do_rightdiv_sm_dm<SparseComplexMatrix> (a, b); } // Funny element by element division operations. // // op2 \ op1: s cs // +-- +---+----+ // matrix | 1 | 3 | // +---+----+ // complex_matrix | 2 | 4 | // +---+----+ Matrix x_el_div (double a, const SparseMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); Matrix result; if (a == 0.) result = Matrix (nr, nc, octave_NaN); else if (a > 0.) result = Matrix (nr, nc, octave_Inf); else result = Matrix (nr, nc, -octave_Inf); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (double a, const SparseComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc, Complex(octave_NaN, octave_NaN)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (const Complex a, const SparseMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc, (a / 0.0)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } ComplexMatrix x_el_div (const Complex a, const SparseComplexMatrix& b) { octave_idx_type nr = b.rows (); octave_idx_type nc = b.cols (); ComplexMatrix result (nr, nc, (a / 0.0)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = b.cidx(j); i < b.cidx(j+1); i++) { octave_quit (); result.elem (b.ridx(i), j) = a / b.data (i); } return result; } // Left division functions. X \ Y = inv(X) * Y // // Y \ X : sm scm dm dcm // +-- +---+----+ // matrix | 1 | 5 | // +---+----+ // complex_matrix | 2 | 6 | // +---+----+----+----+ // sparse matrix | 3 | 7 | 9 | 11 | // +---+----+----+----+ // sparse complex_matrix | 4 | 8 | 10 | 12 | // +---+----+----+----+ // -*- 1 -*- Matrix xleftdiv (const SparseMatrix& a, const Matrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return Matrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 2 -*- ComplexMatrix xleftdiv (const SparseMatrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 3 -*- SparseMatrix xleftdiv (const SparseMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 4 -*- SparseComplexMatrix xleftdiv (const SparseMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 5 -*- ComplexMatrix xleftdiv (const SparseComplexMatrix& a, const Matrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 6 -*- ComplexMatrix xleftdiv (const SparseComplexMatrix& a, const ComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return ComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 7 -*- SparseComplexMatrix xleftdiv (const SparseComplexMatrix& a, const SparseMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } // -*- 8 -*- SparseComplexMatrix xleftdiv (const SparseComplexMatrix& a, const SparseComplexMatrix& b, MatrixType &typ) { if (! mx_leftdiv_conform (a, b)) return SparseComplexMatrix (); octave_idx_type info; double rcond = 0.0; return a.solve (typ, b, info, rcond, solve_singularity_warning); } template <typename RT, typename DM, typename SM> RT do_leftdiv_dm_sm (const DM& d, const SM& a) { const octave_idx_type a_nr = a.rows (); const octave_idx_type a_nc = a.cols (); const octave_idx_type d_nc = d.cols (); using std::min; const octave_idx_type nr = min (d_nc, a_nr); if ( ! mx_leftdiv_conform (d, a)) return RT (); const octave_idx_type nz = a.nnz (); RT r (nr, a_nc, nz); typedef typename DM::element_type DM_elt_type; const DM_elt_type zero = DM_elt_type (); octave_idx_type k_result = 0; for (octave_idx_type j = 0; j < a_nc; ++j) { octave_quit (); const octave_idx_type colend = a.cidx (j+1); r.xcidx (j) = k_result; for (octave_idx_type k = a.cidx (j); k < colend; ++k) { const octave_idx_type i = a.ridx (k); if (i < nr) { const DM_elt_type s = d.dgelem (i); if (s != zero) { r.xdata (k_result) = a.data (k) / s; r.xridx (k_result) = i; ++k_result; } } } } r.xcidx (a_nc) = k_result; r.maybe_compress (true); return r; } // -*- 9 -*- SparseMatrix xleftdiv (const DiagMatrix& d, const SparseMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseMatrix> (d, a); } // -*- 10 -*- SparseComplexMatrix xleftdiv (const DiagMatrix& d, const SparseComplexMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a); } // -*- 11 -*- SparseComplexMatrix xleftdiv (const ComplexDiagMatrix& d, const SparseMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a); } // -*- 12 -*- SparseComplexMatrix xleftdiv (const ComplexDiagMatrix& d, const SparseComplexMatrix& a, MatrixType&) { return do_leftdiv_dm_sm<SparseComplexMatrix> (d, a); }