Mercurial > hg > octave-lyh
view src/syl.cc @ 980:4793e60ad17c
[project @ 1994-12-13 04:52:24 by jwe]
author | jwe |
---|---|
date | Tue, 13 Dec 1994 04:52:24 +0000 |
parents | e81d3a66725e |
children | dfe01093f657 |
line wrap: on
line source
// f-syl.cc -*- C++ -*- /* Copyright (C) 1993, 1994 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ // Written by A. S. Hodel <scotte@eng.auburn.edu> #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "dMatrix.h" #include "CMatrix.h" #include "dbleSCHUR.h" #include "CmplxSCHUR.h" #include "f77-uscore.h" #include "tree-const.h" #include "user-prefs.h" #include "gripes.h" #include "error.h" #include "utils.h" #include "help.h" #include "defun-dld.h" extern "C" { int F77_FCN (dtrsyl) (const char*, const char*, const int*, const int*, const int*, const double*, const int*, const double*, const int*, const double*, const int*, double*, int*, long, long); int F77_FCN (ztrsyl) (const char*, const char*, const int*, const int*, const int*, const Complex*, const int*, const Complex*, const int*, const Complex*, const int*, double*, int*, long, long); } DEFUN_DLD_BUILTIN ("syl", Fsyl, Ssyl, 4, 1, "X = syl (A, B, C): solve the Sylvester equation A X + X B + C = 0") { Octave_object retval; int nargin = args.length (); if (nargin != 3 || nargout > 1) { print_usage ("syl"); return retval; } tree_constant arg_a = args(0); tree_constant arg_b = args(1); tree_constant arg_c = args(2); int a_nr = arg_a.rows (); int a_nc = arg_a.columns (); int b_nr = arg_b.rows (); int b_nc = arg_b.columns (); int c_nr = arg_c.rows (); int c_nc = arg_c.columns (); int arg_a_is_empty = empty_arg ("syl", a_nr, a_nc); int arg_b_is_empty = empty_arg ("syl", b_nr, b_nc); int arg_c_is_empty = empty_arg ("syl", c_nr, c_nc); if (arg_a_is_empty > 0 && arg_b_is_empty > 0 && arg_c_is_empty > 0) return Matrix (); else if (arg_a_is_empty || arg_b_is_empty || arg_c_is_empty) return retval; // Arguments are not empty, so check for correct dimensions. if (a_nr != a_nc || b_nr != b_nc) { gripe_square_matrix_required ("syl: first two parameters:"); return retval; } else if (a_nr != c_nr || b_nr != c_nc) { gripe_nonconformant (); return retval; } // Dimensions look o.k., let's solve the problem. if (arg_a.is_complex_type () || arg_b.is_complex_type () || arg_c.is_complex_type ()) { // Do everything in complex arithmetic; ComplexMatrix ca = arg_a.complex_matrix_value (); if (error_state) return retval; ComplexMatrix cb = arg_b.complex_matrix_value (); if (error_state) return retval; ComplexMatrix cc = arg_c.complex_matrix_value (); if (error_state) return retval; // Compute Schur decompositions ComplexSCHUR as (ca, "U"); ComplexSCHUR bs (cb, "U"); // Transform cc to new coordinates. ComplexMatrix ua = as.unitary_matrix (); ComplexMatrix sch_a = as.schur_matrix (); ComplexMatrix ub = bs.unitary_matrix (); ComplexMatrix sch_b = bs.schur_matrix (); ComplexMatrix cx = ua.hermitian () * cc * ub; // Solve the sylvester equation, back-transform, and return the solution. double scale; int info; int one = 1; F77_FCN (ztrsyl) ("N", "N", &one, &a_nr, &b_nr, sch_a.fortran_vec (), &a_nr, sch_b.fortran_vec (), &b_nr, cx.fortran_vec (), &a_nr, &scale, &info, 1L, 1L); cx = -ua * cx * ub.hermitian (); retval = cx; } else { // Do everything in real arithmetic; Matrix ca = arg_a.matrix_value (); if (error_state) return retval; Matrix cb = arg_b.matrix_value (); if (error_state) return retval; Matrix cc = arg_c.matrix_value (); if (error_state) return retval; // Compute Schur decompositions. SCHUR as (ca, "U"); SCHUR bs (cb, "U"); // Transform cc to new coordinates. Matrix ua = as.unitary_matrix (); Matrix sch_a = as.schur_matrix (); Matrix ub = bs.unitary_matrix (); Matrix sch_b = bs.schur_matrix (); Matrix cx = ua.transpose () * cc * ub; // Solve the sylvester equation, back-transform, and return the solution. double scale; int info; int one = 1; F77_FCN (dtrsyl) ("N", "N", &one, &a_nr, &b_nr, sch_a.fortran_vec (), &a_nr, sch_b.fortran_vec (), &b_nr, cx.fortran_vec (), &a_nr, &scale, &info, 1L, 1L); if (info) error ("syl: trouble in dtrsyl info = %d", info); cx = -ua*cx*ub.transpose (); retval = cx; } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */