Mercurial > hg > octave-lyh
view scripts/signal/bartlett.m @ 17398:4bcd301754ce
Add Matlab-compatible flintmax function
* bitfcns.cc (Fflintmax): New function based on bitmax.
(Fbitmax, Fintmax, Fintmin): Update seealso to refer to flintmax.
* numbers.txi: Include flintmax docstring.
author | Mike Miller <mtmiller@ieee.org> |
---|---|
date | Sun, 08 Sep 2013 17:28:05 -0400 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 1995-2012 Andreas Weingessel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} bartlett (@var{m}) ## Return the filter coefficients of a Bartlett (triangular) window of ## length @var{m}. ## ## For a definition of the Bartlett window, see e.g., A. V. Oppenheim & ## R. W. Schafer, @cite{Discrete-Time Signal Processing}. ## @end deftypefn ## Author: AW <Andreas.Weingessel@ci.tuwien.ac.at> ## Description: Coefficients of the Bartlett (triangular) window function c = bartlett (m) if (nargin != 1) print_usage (); endif if (! (isscalar (m) && (m == fix (m)) && (m > 0))) error ("bartlett: M has to be an integer > 0"); endif if (m == 1) c = 1; else m = m - 1; n = fix (m / 2); c = [2*(0:n)/m, 2-2*(n+1:m)/m]'; endif endfunction %!assert (bartlett (1), 1) %!assert (bartlett (2), zeros (2,1)) %!assert (bartlett (16), fliplr (bartlett (16))) %!assert (bartlett (15), fliplr (bartlett (15))) %!test %! N = 9; %! A = bartlett (N); %! assert (A(ceil (N/2)), 1); %!error bartlett () %!error bartlett (0.5) %!error bartlett (-1) %!error bartlett (ones (1,4))