Mercurial > hg > octave-lyh
view scripts/control/util/zgfmul.m @ 5307:4c8a2e4e0717
[project @ 2005-04-26 19:24:27 by jwe]
author | jwe |
---|---|
date | Tue, 26 Apr 2005 19:24:47 +0000 |
parents | bdbee5282954 |
children | 93c65f2a5668 |
line wrap: on
line source
## Copyright (C) 1996, 1998 Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{y} =} zgfmul (@var{a}, @var{b}, @var{c}, @var{d}, @var{x}) ## Compute product of @var{zgep} incidence matrix @math{F} with vector @var{x}. ## Used by @command{zgepbal} (in @command{zgscal}) as part of generalized conjugate gradient ## iteration. ## @end deftypefn ## References: ## ZGEP: Hodel, "Computation of Zeros with Balancing," 1992, submitted to LAA ## Generalized CG: Golub and Van Loan, "Matrix Computations, 2nd ed" 1989 ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Conversion to Octave July 3, 1994 function y = zgfmul (a, b, c, d, x) [n,m] = size(b); [p,m1] = size(c); nm = n+m; y = zeros(nm+p,1); ## construct F column by column for jj=1:n Fj = zeros(nm+p,1); ## rows 1:n: F1 aridx = complement(jj,find(a(jj,:) != 0)); acidx = complement(jj,find(a(:,jj) != 0)); bidx = find(b(jj,:) != 0); cidx = find(c(:,jj) != 0); Fj(aridx) = Fj(aridx) - 1; # off diagonal entries of F1 Fj(acidx) = Fj(acidx) - 1; ## diagonal entry of F1 Fj(jj) = length(aridx)+length(acidx) + length(bidx) + length(cidx); if(!isempty(bidx)) Fj(n+bidx) = 1; endif # B' incidence if(!isempty(cidx)) Fj(n+m+cidx) = -1; endif # -C incidence y = y + x(jj)*Fj; # multiply by corresponding entry of x endfor for jj=1:m Fj = zeros(nm+p,1); bidx = find(b(:,jj) != 0); if(!isempty(bidx)) Fj(bidx) = 1; endif # B incidence didx = find(d(:,jj) != 0); if(!isempty(didx)) Fj(n+m+didx) = 1; endif # D incidence Fj(n+jj) = length(bidx) + length(didx); # F2 is diagonal y = y + x(n+jj)*Fj; # multiply by corresponding entry of x endfor for jj=1:p Fj = zeros(nm+p,1); cidx = find(c(jj,:) != 0); if(!isempty(cidx)) Fj(cidx) = -1; endif # -C' incidence didx = find(d(jj,:) != 0); if(!isempty(didx)) Fj(n+didx) = 1; endif # D' incidence Fj(n+m+jj) = length(cidx) + length(didx); # F2 is diagonal y = y + x(n+m+jj)*Fj; # multiply by corresponding entry of x endfor endfunction