Mercurial > hg > octave-lyh
view scripts/statistics/distributions/pascal_rnd.m @ 5307:4c8a2e4e0717
[project @ 2005-04-26 19:24:27 by jwe]
author | jwe |
---|---|
date | Tue, 26 Apr 2005 19:24:47 +0000 |
parents | 265d566cc770 |
children | 2a16423e4aa0 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} pascal_rnd (@var{n}, @var{p}, @var{r}, @var{c}) ## @deftypefnx {Function File} {} pascal_rnd (@var{n}, @var{p}, @var{sz}) ## Return an @var{r} by @var{c} matrix of random samples from the Pascal ## (negative binomial) distribution with parameters @var{n} and @var{p}. ## Both @var{n} and @var{p} must be scalar or of size @var{r} by @var{c}. ## ## If @var{r} and @var{c} are omitted, the size of the result matrix is ## the common size of @var{n} and @var{p}. Or if @var{sz} is a vector, ## create a matrix of size @var{sz}. ## @end deftypefn ## Author: KH <Kurt.Hornik@ci.tuwien.ac.at> ## Description: Random deviates from the Pascal distribution function rnd = pascal_rnd (n, p, r, c) if (nargin > 1) if (!isscalar(n) || !isscalar(p)) [retval, n, p] = common_size (n, p); if (retval > 0) error ("pascal_rnd: n and p must be of common size or scalar"); endif endif endif if (nargin == 4) if (! (isscalar (r) && (r > 0) && (r == round (r)))) error ("pascal_rnd: r must be a positive integer"); endif if (! (isscalar (c) && (c > 0) && (c == round (c)))) error ("pascal_rnd: c must be a positive integer"); endif sz = [r, c]; if (any (size (n) != 1) && ((length (size (n)) != length (sz)) || any (size (n) != sz))) error ("pascal_rnd: n and p must be scalar or of size [r, c]"); endif elseif (nargin == 3) if (isscalar (r) && (r > 0)) sz = [r, r]; elseif (isvector(r) && all (r > 0)) sz = r(:)'; else error ("pascal_rnd: r must be a postive integer or vector"); endif if (any (size (n) != 1) && ((length (size (n)) != length (sz)) || any (size (n) != sz))) error ("pascal_rnd: n and p must be scalar or of size sz"); endif elseif (nargin == 2) sz = size(n); else usage ("pascal_rnd (n, p, r, c)"); endif if (isscalar (n) && isscalar (p)) if ((n < 1) || (n == Inf) || (n != round (n)) || (p <= 0) || (p > 1)); rnd = NaN * ones (sz) elseif ((n > 0) && (n < Inf) && (n == round (n)) && (p > 0) && (p <= 1)) L = prod (sz); tmp = floor (log (rand (n, L)) / log (1 - p)); if (n == 1) rnd = tmp; else ind = (1 : n)' * ones (1, L); rnd = sum (tmp .* (ind <= n)); endif else rnd = zeros (sz); endif else rnd = zeros (sz); k = find ((n < 1) || (n == Inf) || (n != round (n)) || (p <= 0) || (p > 1)); if (any (k)) rnd(k) = NaN; endif k = find ((n > 0) & (n < Inf) & (n == round (n)) & (p > 0) & (p <= 1)); if (any (k)) n = reshape (n, 1, prod (sz)); p = reshape (p, 1, prod (sz)); N = max (n(k)); L = length (k); tmp = floor (log (rand (N, L)) ./ (ones (N, 1) * log (1 - p(k)))); if (N == 1) rnd(k) = tmp; else ind = (1 : N)' * ones (1, L); rnd(k) = sum (tmp .* (ind <= ones (N, 1) * n(k))); endif endif endif endfunction