Mercurial > hg > octave-lyh
view scripts/linear-algebra/issymmetric.m @ 11188:4cb1522e4d0f
Use function handle as input to cellfun,
rather than quoted function name or anonymous function wrapper.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Wed, 03 Nov 2010 17:20:56 -0700 |
parents | fbd7843974fa |
children | 0d9640d755b1 |
line wrap: on
line source
## Copyright (C) 1996, 1997, 2002, 2003, 2004, 2005, 2006, 2007, 2008 ## John W. Eaton ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} issymmetric (@var{x}, @var{tol}) ## Return true if @var{x} is a symmetric matrix within the tolerance specified ## by @var{tol}, otherwise return false. The default tolerance is zero (uses ## faster code). ## Matrix @var{x} is considered symmetric if ## @code{norm (@var{x} - @var{x}.', inf) / norm (@var{x}, inf) < @var{tol}}. ## @seealso{size, rows, columns, length, ismatrix, isscalar, ## issquare, isvector} ## @end deftypefn ## Author: A. S. Hodel <scotte@eng.auburn.edu> ## Created: August 1993 ## Adapted-By: jwe function retval = issymmetric (x, tol = 0) if (nargin < 1 || nargin > 2) print_usage (); endif retval = isnumeric (x) && issquare (x); if (retval) if (tol == 0) retval = all ((x == x.')(:)); else norm_x = norm (x, inf); retval = norm_x == 0 || norm (x - x.', inf) / norm_x <= tol; endif endif endfunction %!assert(issymmetric (1)); %!assert(!(issymmetric ([1, 2]))); %!assert(issymmetric ([])); %!assert(issymmetric ([1, 2; 2, 1])); %!assert(!(issymmetric ("test"))); %!assert(issymmetric ([1, 2.1; 2, 1.1], 0.2)); %!assert(issymmetric ([1, 2i; 2i, 1])); %!assert(!(issymmetric ("t"))); %!assert(!(issymmetric (["te"; "et"]))); %!error issymmetric ([1, 2; 2, 1], 0, 0); %!error issymmetric (); %!test %! s.a = 1; %! assert(!(issymmetric (s)));