Mercurial > hg > octave-lyh
view scripts/linear-algebra/logm.m @ 11188:4cb1522e4d0f
Use function handle as input to cellfun,
rather than quoted function name or anonymous function wrapper.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Wed, 03 Nov 2010 17:20:56 -0700 |
parents | d9c8916bb9dd |
children | 93a039fe681e |
line wrap: on
line source
## Copyright (C) 2010 Richard T. Guy <guyrt7@wfu.edu> ## Copyright (C) 2010 Marco Caliari <marco.caliari@univr.it> ## Copyright (C) 2008 N.J. Higham ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} logm (@var{a}) ## @deftypefnx {Function File} {@var{s} =} logm (@var{a}, @var{opt_iters}) ## @deftypefnx {Function File} {[@var{s}, @var{iters}] =} logm (@dots{}) ## Compute the matrix logarithm of the square matrix @var{a}. The ## implementation utilizes a Pad@'e approximant and the identity ## ## @example ## logm(@var{a}) = 2^k * logm(@var{a}^(1 / 2^k)) ## @end example ## ## The optional argument @var{opt_iters} is the maximum number of square roots ## to compute and defaults to 100. The optional output @var{iters} is the ## number of square roots actually computed. ## ## @end deftypefn ## Reference: N. J. Higham, Functions of Matrices: Theory and Computation ## (SIAM, 2008.) ## function [s, iters] = logm (a, opt_iters) if (nargin == 0) print_usage (); elseif (nargin < 2) opt_iters = 100; elseif (nargin > 2) print_usage (); endif if (! issquare (a)) error ("logm: argument must be a square matrix."); endif [u, s] = schur (a); if (isreal (a)) [u, s] = rsf2csf (u, s); endif if (any (diag (s) < 0)) warning ("Octave:logm:non-principal", ["logm: Matrix has negative eigenvalues.", ... " Principal matrix logarithm is not defined.", ... " Computing non-principal logarithm."]); endif k = 0; ## Algorithm 11.9 in "Function of matrices", by N. Higham theta = [0, 0, 1.61e-2, 5.38e-2, 1.13e-1, 1.86e-1, 2.6429608311114350e-1]; p = 0; m = 7; while (k < opt_iters) tau = norm (s - eye (size (s)),1); if (tau <= theta (7)) p = p + 1; j(1) = find (tau <= theta, 1); j(2) = find (tau / 2 <= theta, 1); if (j(1) - j(2) <= 1 || p == 2) m = j(1); break endif endif k = k + 1; s = sqrtm (s); endwhile if (k >= opt_iters) warning ("logm: Maximum number of square roots exceeded. Results may still be accurate."); endif s = logm_pade_pf (s - eye (size (s)), m); s = 2^k * u * s * u'; if (nargout == 2) iters = k; endif endfunction ################## ANCILLARY FUNCTIONS ################################ ###### Taken from the mfttoolbox (GPL 3) by D. Higham. ###### Reference: ###### D. Higham, Functions of Matrices: Theory and Computation ###### (SIAM, 2008.). ####################################################################### ##LOGM_PADE_PF Evaluate Pade approximant to matrix log by partial fractions. ## Y = LOGM_PADE_PF(a,M) evaluates the [M/M] Pade approximation to ## LOG(EYE(SIZE(a))+a) using a partial fraction expansion. function s = logm_pade_pf(a,m) [nodes,wts] = gauss_legendre(m); ## Convert from [-1,1] to [0,1]. nodes = (nodes + 1)/2; wts = wts/2; n = length(a); s = zeros(n); for j=1:m s = s + wts(j)*(a/(eye(n) + nodes(j)*a)); endfor endfunction ###################################################################### ## GAUSS_LEGENDRE Nodes and weights for Gauss-Legendre quadrature. ## [X,W] = GAUSS_LEGENDRE(N) computes the nodes X and weights W ## for N-point Gauss-Legendre quadrature. ## Reference: ## G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature ## rules, Math. Comp., 23(106):221-230, 1969. function [x,w] = gauss_legendre(n) i = 1:n-1; v = i./sqrt ((2*i).^2-1); [V,D] = eig ( diag(v,-1)+diag(v,1) ); x = diag (D); w = 2*(V(1,:)'.^2); endfunction %!assert(norm(logm([1 -1;0 1]) - [0 -1; 0 0]) < 1e-5); %!assert(norm(expm(logm([-1 2 ; 4 -1])) - [-1 2 ; 4 -1]) < 1e-5); %!assert(logm([1 -1 -1;0 1 -1; 0 0 1]), [0 -1 -1.5; 0 0 -1; 0 0 0], 1e-5); %! %% Test input validation %!error logm (); %!error logm (1, 2, 3); %!error <logm: argument must be a square matrix.> logm([1 0;0 1; 2 2]);