Mercurial > hg > octave-lyh
view scripts/specfun/nchoosek.m @ 11188:4cb1522e4d0f
Use function handle as input to cellfun,
rather than quoted function name or anonymous function wrapper.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Wed, 03 Nov 2010 17:20:56 -0700 |
parents | 693e22af08ae |
children | fd0a3ac60b0e |
line wrap: on
line source
## Copyright (C) 2001, 2006, 2007, 2009 Rolf Fabian and Paul Kienzle ## Copyright (C) 2008 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k}) ## ## Compute the binomial coefficient or all combinations of @var{n}. ## If @var{n} is a scalar then, calculate the binomial coefficient ## of @var{n} and @var{k}, defined as ## @tex ## $$ ## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!} ## = {n! \over k! (n-k)!} ## $$ ## @end tex ## @ifnottex ## ## @example ## @group ## / \ ## | n | n (n-1) (n-2) @dots{} (n-k+1) n! ## | | = ------------------------- = --------- ## | k | k! k! (n-k)! ## \ / ## @end group ## @end example ## ## @end ifnottex ## ## If @var{n} is a vector generate all combinations of the elements ## of @var{n}, taken @var{k} at a time, one row per combination. The ## resulting @var{c} has size @code{[nchoosek (length (@var{n}), ## @var{k}), @var{k}]}. ## ## @code{nchoosek} works only for non-negative integer arguments; use ## @code{bincoeff} for non-integer scalar arguments and for using vector ## arguments to compute many coefficients at once. ## ## @seealso{bincoeff} ## @end deftypefn ## Author: Rolf Fabian <fabian@tu-cottbus.de> ## Author: Paul Kienzle <pkienzle@users.sf.net> ## Author: Jaroslav Hajek function A = nchoosek (v, k) if (nargin != 2 || !isnumeric(k) || !isnumeric(v) || !isscalar(k) || (!isscalar(v) && !isvector(v))) print_usage (); endif if ((isscalar(v) && v < k) || k < 0 || k != round(k) || any (v < 0 || v != round(v))) error ("nchoosek: args are nonnegative integers with V not less than K"); endif n = length (v); if (n == 1) ## Improve precision at next step. k = min (k, v-k); A = round (prod ((v-k+1:v)./(1:k))); if (A*2*k*eps >= 0.5) warning ("nchoosek", "nchoosek: possible loss of precision"); endif elseif (k == 0) A = []; elseif (k == 1) A = v(:); elseif (k == n) A = v(:).'; elseif (k > n) A = zeros (0, k, class (v)); elseif (k == 2) ## Can do it without transpose. x = repelems (v(1:n-1), [1:n-1; n-1:-1:1]).'; y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:}); A = [x, y]; elseif (k < n) v = v(:).'; A = v(k:n); l = 1:n-k+1; for j = 2:k c = columns (A); cA = cellslices (A, l, c*ones (1, n-k+1), 2); l = c-l+1; b = repelems (v(k-j+1:n-j+1), [1:n-k+1; l]); A = [b; cA{:}]; l = cumsum (l); l = [1, 1 + l(1:n-k)]; endfor clear cA b; A = A.'; endif endfunction %!warning (nchoosek(100,45)); %!error (nchoosek(100,45.5)); %!error (nchoosek(100,145)); %!assert (nchoosek(80,10), bincoeff(80,10)) %!assert (nchoosek(1:5,3),[1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])