Mercurial > hg > octave-lyh
view scripts/testfun/speed.m @ 11188:4cb1522e4d0f
Use function handle as input to cellfun,
rather than quoted function name or anonymous function wrapper.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Wed, 03 Nov 2010 17:20:56 -0700 |
parents | a4f482e66b65 |
children | 87f258202b0f |
line wrap: on
line source
## Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, ## 2009 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} speed (@var{f}, @var{init}, @var{max_n}, @var{f2}, @var{tol}) ## @deftypefnx {Function File} {[@var{order}, @var{n}, @var{T_f}, @var{T_f2}] =} speed (@dots{}) ## ## Determine the execution time of an expression for various @var{n}. ## The @var{n} are log-spaced from 1 to @var{max_n}. For each @var{n}, ## an initialization expression is computed to create whatever data ## are needed for the test. If a second expression is given, the ## execution times of the two expressions will be compared. Called ## without output arguments the results are presented graphically. ## ## @table @code ## @item @var{f} ## The expression to evaluate. ## ## @item @var{max_n} ## The maximum test length to run. Default value is 100. Alternatively, ## use @code{[min_n,max_n]} or for complete control, @code{[n1,n2,@dots{},nk]}. ## ## @item @var{init} ## Initialization expression for function argument values. Use @var{k} ## for the test number and @var{n} for the size of the test. This should ## compute values for all variables used by @var{f}. Note that init will ## be evaluated first for @math{k = 0}, so things which are constant throughout ## the test can be computed then. The default value is @code{@var{x} = ## randn (@var{n}, 1)}. ## ## @item @var{f2} ## An alternative expression to evaluate, so the speed of the two ## can be compared. The default is @code{[]}. ## ## @item @var{tol} ## If @var{tol} is @code{Inf}, then no comparison will be made between the ## results of expression @var{f} and expression @var{f2}. Otherwise, ## expression @var{f} should produce a value @var{v} and expression @var{f2} ## should produce a value @var{v2}, and these will be compared using ## @code{assert(@var{v},@var{v2},@var{tol})}. If @var{tol} is positive, ## the tolerance is assumed to be absolute. If @var{tol} is negative, ## the tolerance is assumed to be relative. The default is @code{eps}. ## ## @item @var{order} ## The time complexity of the expression @code{O(a n^p)}. This ## is a structure with fields @code{a} and @code{p}. ## ## @item @var{n} ## The values @var{n} for which the expression was calculated and ## the execution time was greater than zero. ## ## @item @var{T_f} ## The nonzero execution times recorded for the expression @var{f} in seconds. ## ## @item @var{T_f2} ## The nonzero execution times recorded for the expression @var{f2} in seconds. ## If it is needed, the mean time ratio is just @code{mean(T_f./T_f2)}. ## ## @end table ## ## The slope of the execution time graph shows the approximate ## power of the asymptotic running time @code{O(n^p)}. This ## power is plotted for the region over which it is approximated ## (the latter half of the graph). The estimated power is not ## very accurate, but should be sufficient to determine the ## general order of your algorithm. It should indicate if for ## example your implementation is unexpectedly @code{O(n^2)} ## rather than @code{O(n)} because it extends a vector each ## time through the loop rather than pre-allocating one which is ## big enough. For example, in the current version of Octave, ## the following is not the expected @code{O(n)}: ## ## @example ## speed ("for i = 1:n, y@{i@} = x(i); end", "", [1000,10000]) ## @end example ## ## @noindent ## but it is if you preallocate the cell array @code{y}: ## ## @example ## @group ## speed ("for i = 1:n, y@{i@} = x(i); end", ... ## "x = rand (n, 1); y = cell (size (x));", [1000, 10000]) ## @end group ## @end example ## ## An attempt is made to approximate the cost of the individual ## operations, but it is wildly inaccurate. You can improve the ## stability somewhat by doing more work for each @code{n}. For ## example: ## ## @example ## speed ("airy(x)", "x = rand (n, 10)", [10000, 100000]) ## @end example ## ## When comparing a new and original expression, the line on the ## speedup ratio graph should be larger than 1 if the new expression ## is faster. Better algorithms have a shallow slope. Generally, ## vectorizing an algorithm will not change the slope of the execution ## time graph, but it will shift it relative to the original. For ## example: ## ## @example ## @group ## speed ("v = sum (x)", "", [10000, 100000], ... ## "v = 0; for i = 1:length (x), v += x(i); end") ## @end group ## @end example ## ## A more complex example, if you had an original version of @code{xcorr} ## using for loops and another version using an FFT, you could compare the ## run speed for various lags as follows, or for a fixed lag with varying ## vector lengths as follows: ## ## @example ## @group ## speed ("v = xcorr (x, n)", "x = rand (128, 1);", 100, ## "v2 = xcorr_orig (x, n)", -100*eps) ## speed ("v = xcorr (x, 15)", "x = rand (20+n, 1);", 100, ## "v2 = xcorr_orig (x, n)", -100*eps) ## @end group ## @end example ## ## Assuming one of the two versions is in @var{xcorr_orig}, this ## would compare their speed and their output values. Note that the ## FFT version is not exact, so we specify an acceptable tolerance on ## the comparison @code{100*eps}, and the errors should be computed ## relatively, as @code{abs((@var{x} - @var{y})./@var{y})} rather than ## absolutely as @code{abs(@var{x} - @var{y})}. ## ## Type @code{example('speed')} to see some real examples. Note for ## obscure reasons, you can't run examples 1 and 2 directly using ## @code{demo('speed')}. Instead use, @code{eval(example('speed',1))} ## and @code{eval(example('speed',2))}. ## @end deftypefn ## FIXME: consider two dimensional speedup surfaces for functions like kron. function [__order, __test_n, __tnew, __torig] ... = speed (__f1, __init, __max_n, __f2, __tol) if (nargin < 1 || nargin > 6) print_usage (); endif if (nargin < 2 || isempty (__init)) __init = "x = randn(n, 1);"; endif if (nargin < 3 || isempty (__max_n)) __max_n = 100; endif if (nargin < 4) __f2 = []; endif if (nargin < 5 || isempty (__tol)) __tol = eps; endif __numtests = 15; ## Let user specify range of n. if (isscalar (__max_n)) __min_n = 1; assert (__max_n > __min_n); __test_n = logspace (0, log10 (__max_n), __numtests); elseif (length (__max_n) == 2) __min_n = __max_n(1); __max_n = __max_n(2); assert (__min_n >= 1); __test_n = logspace (log10 (__min_n), log10 (__max_n), __numtests); else __test_n = __max_n; endif ## Force n to be an integer. __test_n = unique (round (__test_n)); assert (__test_n >= 1); __torig = __tnew = zeros (size (__test_n)); disp (cstrcat ("testing ", __f1, "\ninit: ", __init)); ## Make sure the functions are freshly loaded by evaluating them at ## test_n(1); first have to initialize the args though. n = 1; k = 0; eval (cstrcat (__init, ";")); if (! isempty (__f2)) eval (cstrcat (__f2, ";")); endif eval (cstrcat (__f1, ";")); ## Run the tests. for k = 1:length (__test_n) n = __test_n(k); eval (cstrcat (__init, ";")); printf ("n%i = %i ",k, n); fflush (stdout); eval (cstrcat ("__t = time();", __f1, "; __v1=ans; __t = time()-__t;")); if (__t < 0.25) eval (cstrcat ("__t2 = time();", __f1, "; __t2 = time()-__t2;")); eval (cstrcat ("__t3 = time();", __f1, "; __t3 = time()-__t3;")); __t = min ([__t, __t2, __t3]); endif __tnew(k) = __t; if (! isempty (__f2)) eval (cstrcat ("__t = time();", __f2, "; __v2=ans; __t = time()-__t;")); if (__t < 0.25) eval (cstrcat ("__t2 = time();", __f2, "; __t2 = time()-__t2;")); eval (cstrcat ("__t3 = time();", __f2, "; __t3 = time()-__t3;")); endif __torig(k) = __t; if (! isinf(__tol)) assert (__v1, __v2, __tol); endif endif endfor ## Drop times of zero. if (! isempty (__f2)) zidx = (__tnew < 100*eps | __torig < 100*eps); __test_n(zidx) = []; __tnew(zidx) = []; __torig(zidx) = []; else zidx = (__tnew < 100*eps); __test_n(zidx) = []; __tnew(zidx) = []; endif ## Approximate time complexity and return it if requested. tailidx = ceil(length(__test_n)/2):length(__test_n); p = polyfit (log (__test_n(tailidx)), log (__tnew(tailidx)), 1); if (nargout > 0) __order.p = p(1); __order.a = exp (p(2)); endif ## Plot the data if no output is requested. doplot = (nargout == 0); if (doplot) figure; endif if (doplot && ! isempty (__f2)) subplot (1, 2, 1); semilogx (__test_n, __torig./__tnew, cstrcat ("-*r;", strrep (__f1, ";", "."), "/", strrep (__f2, ";", "."), ";"), __test_n, __tnew./__torig, cstrcat ("-*g;", strrep (__f2, ";", "."), "/", strrep (__f1, ";", "."), ";")); xlabel ("test length"); title (__f1); ylabel ("speedup ratio"); subplot (1, 2, 2); loglog (__test_n, __tnew*1000, cstrcat ("*-g;", strrep (__f1, ";", "."), ";"), __test_n, __torig*1000, cstrcat ("*-r;", strrep (__f2,";","."), ";")); xlabel ("test length"); ylabel ("best execution time (ms)"); title (cstrcat ("init: ", __init)); ratio = mean (__torig ./ __tnew); printf ("\n\nMean runtime ratio = %.3g for '%s' vs '%s'\n", ratio, __f2, __f1); elseif (doplot) loglog (__test_n, __tnew*1000, "*-g;execution time;"); xlabel ("test length"); ylabel ("best execution time (ms)"); title (cstrcat (__f1, " init: ", __init)); endif if (doplot) ## Plot time complexity approximation (using milliseconds). order = sprintf ("O(n^%g)", round (10*p(1))/10); v = polyval (p, log (__test_n(tailidx))); loglog (__test_n(tailidx), exp(v)*1000, sprintf ("b;%s;", order)); ## Get base time to 1 digit of accuracy. dt = exp (p(2)); dt = floor (dt/10^floor(log10(dt)))*10^floor(log10(dt)); if (log10 (dt) >= -0.5) time = sprintf ("%g s", dt); elseif (log10 (dt) >= -3.5) time = sprintf ("%g ms", dt*1e3); elseif (log10 (dt) >= -6.5) time = sprintf ("%g us", dt*1e6); else time = sprintf ("%g ns", dt*1e9); endif ## Display nicely formatted complexity. printf ("\nFor %s:\n", __f1); printf (" asymptotic power: %s\n", order); printf (" approximate time per operation: %s\n", time); endif endfunction %!demo if 1 %! function x = build_orig(n) %! ## extend the target vector on the fly %! for i=0:n-1, x([1:10]+i*10) = 1:10; endfor %! endfunction %! function x = build(n) %! ## preallocate the target vector %! x = zeros(1, n*10); %! try %! if (prefer_column_vectors), x = x.'; endif %! catch %! end %! for i=0:n-1, x([1:10]+i*10) = 1:10; endfor %! endfunction %! %! disp("-----------------------"); %! type build_orig; %! disp("-----------------------"); %! type build; %! disp("-----------------------"); %! %! disp("Preallocated vector test.\nThis takes a little while..."); %! speed('build(n)', '', 1000, 'build_orig(n)'); %! clear build build_orig %! disp("Note how much faster it is to pre-allocate a vector."); %! disp("Notice the peak speedup ratio."); %! endif %!demo if 1 %! function x = build_orig(n) %! for i=0:n-1, x([1:10]+i*10) = 1:10; endfor %! endfunction %! function x = build(n) %! idx = [1:10]'; %! x = idx(:,ones(1,n)); %! x = reshape(x, 1, n*10); %! try %! if (prefer_column_vectors), x = x.'; endif %! catch %! end %! endfunction %! %! disp("-----------------------"); %! type build_orig; %! disp("-----------------------"); %! type build; %! disp("-----------------------"); %! %! disp("Vectorized test. This takes a little while..."); %! speed('build(n)', '', 1000, 'build_orig(n)'); %! clear build build_orig %! disp("-----------------------"); %! disp("This time, the for loop is done away with entirely."); %! disp("Notice how much bigger the speedup is then in example 1."); %! endif