Mercurial > hg > octave-lyh
view liboctave/fCColVector.cc @ 10521:4d1fc073fbb7
add some missing copyright stmts
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Wed, 14 Apr 2010 12:23:13 +0200 |
parents | a0728e81ed25 |
children | 141b3fb5cef7 |
line wrap: on
line source
// ColumnVector manipulations. /* Copyright (C) 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 John W. Eaton Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <iostream> #include "Array-util.h" #include "f77-fcn.h" #include "functor.h" #include "lo-error.h" #include "mx-base.h" #include "mx-inlines.cc" #include "oct-cmplx.h" // Fortran functions we call. extern "C" { F77_RET_T F77_FUNC (cgemv, CGEMV) (F77_CONST_CHAR_ARG_DECL, const octave_idx_type&, const octave_idx_type&, const FloatComplex&, const FloatComplex*, const octave_idx_type&, const FloatComplex*, const octave_idx_type&, const FloatComplex&, FloatComplex*, const octave_idx_type& F77_CHAR_ARG_LEN_DECL); } // FloatComplex Column Vector class FloatComplexColumnVector::FloatComplexColumnVector (const FloatColumnVector& a) : MArray<FloatComplex> (a) { } bool FloatComplexColumnVector::operator == (const FloatComplexColumnVector& a) const { octave_idx_type len = length (); if (len != a.length ()) return 0; return mx_inline_equal (len, data (), a.data ()); } bool FloatComplexColumnVector::operator != (const FloatComplexColumnVector& a) const { return !(*this == a); } // destructive insert/delete/reorder operations FloatComplexColumnVector& FloatComplexColumnVector::insert (const FloatColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::insert (const FloatComplexColumnVector& a, octave_idx_type r) { octave_idx_type a_len = a.length (); if (r < 0 || r + a_len > length ()) { (*current_liboctave_error_handler) ("range error for insert"); return *this; } if (a_len > 0) { make_unique (); for (octave_idx_type i = 0; i < a_len; i++) xelem (r+i) = a.elem (i); } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (float val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (const FloatComplex& val) { octave_idx_type len = length (); if (len > 0) { make_unique (); for (octave_idx_type i = 0; i < len; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (float val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector& FloatComplexColumnVector::fill (const FloatComplex& val, octave_idx_type r1, octave_idx_type r2) { octave_idx_type len = length (); if (r1 < 0 || r2 < 0 || r1 >= len || r2 >= len) { (*current_liboctave_error_handler) ("range error for fill"); return *this; } if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } if (r2 >= r1) { make_unique (); for (octave_idx_type i = r1; i <= r2; i++) xelem (i) = val; } return *this; } FloatComplexColumnVector FloatComplexColumnVector::stack (const FloatColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; FloatComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } FloatComplexColumnVector FloatComplexColumnVector::stack (const FloatComplexColumnVector& a) const { octave_idx_type len = length (); octave_idx_type nr_insert = len; FloatComplexColumnVector retval (len + a.length ()); retval.insert (*this, 0); retval.insert (a, nr_insert); return retval; } FloatComplexRowVector FloatComplexColumnVector::hermitian (void) const { return MArray<FloatComplex>::hermitian (std::conj); } FloatComplexRowVector FloatComplexColumnVector::transpose (void) const { return MArray<FloatComplex>::transpose (); } FloatColumnVector FloatComplexColumnVector::abs (void) const { return do_mx_unary_map<float, FloatComplex, std::abs> (*this); } FloatComplexColumnVector conj (const FloatComplexColumnVector& a) { return do_mx_unary_map<FloatComplex, FloatComplex, std::conj> (a); } // resize is the destructive equivalent for this one FloatComplexColumnVector FloatComplexColumnVector::extract (octave_idx_type r1, octave_idx_type r2) const { if (r1 > r2) { octave_idx_type tmp = r1; r1 = r2; r2 = tmp; } octave_idx_type new_r = r2 - r1 + 1; FloatComplexColumnVector result (new_r); for (octave_idx_type i = 0; i < new_r; i++) result.elem (i) = elem (r1+i); return result; } FloatComplexColumnVector FloatComplexColumnVector::extract_n (octave_idx_type r1, octave_idx_type n) const { FloatComplexColumnVector result (n); for (octave_idx_type i = 0; i < n; i++) result.elem (i) = elem (r1+i); return result; } // column vector by column vector -> column vector operations FloatComplexColumnVector& FloatComplexColumnVector::operator += (const FloatColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator +=", len, a_len); return *this; } if (len == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_add2 (len, d, a.data ()); return *this; } FloatComplexColumnVector& FloatComplexColumnVector::operator -= (const FloatColumnVector& a) { octave_idx_type len = length (); octave_idx_type a_len = a.length (); if (len != a_len) { gripe_nonconformant ("operator -=", len, a_len); return *this; } if (len == 0) return *this; FloatComplex *d = fortran_vec (); // Ensures only one reference to my privates! mx_inline_sub2 (len, d, a.data ()); return *this; } // matrix by column vector -> column vector operations FloatComplexColumnVector operator * (const FloatComplexMatrix& m, const FloatColumnVector& a) { FloatComplexColumnVector tmp (a); return m * tmp; } FloatComplexColumnVector operator * (const FloatComplexMatrix& m, const FloatComplexColumnVector& a) { FloatComplexColumnVector retval; octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) gripe_nonconformant ("operator *", nr, nc, a_len, 1); else { retval.clear (nr); if (nr != 0) { FloatComplex *y = retval.fortran_vec (); F77_XFCN (cgemv, CGEMV, (F77_CONST_CHAR_ARG2 ("N", 1), nr, nc, 1.0f, m.data (), nr, a.data (), 1, 0.0f, y, 1 F77_CHAR_ARG_LEN (1))); } } return retval; } // matrix by column vector -> column vector operations FloatComplexColumnVector operator * (const FloatMatrix& m, const FloatComplexColumnVector& a) { FloatComplexMatrix tmp (m); return tmp * a; } // diagonal matrix by column vector -> column vector operations FloatComplexColumnVector operator * (const FloatDiagMatrix& m, const FloatComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return FloatComplexColumnVector (); } if (nc == 0 || nr == 0) return FloatComplexColumnVector (0); FloatComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } FloatComplexColumnVector operator * (const FloatComplexDiagMatrix& m, const FloatColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return FloatComplexColumnVector (); } if (nc == 0 || nr == 0) return FloatComplexColumnVector (0); FloatComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } FloatComplexColumnVector operator * (const FloatComplexDiagMatrix& m, const FloatComplexColumnVector& a) { octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); octave_idx_type a_len = a.length (); if (nc != a_len) { gripe_nonconformant ("operator *", nr, nc, a_len, 1); return FloatComplexColumnVector (); } if (nc == 0 || nr == 0) return FloatComplexColumnVector (0); FloatComplexColumnVector result (nr); for (octave_idx_type i = 0; i < a_len; i++) result.elem (i) = a.elem (i) * m.elem (i, i); for (octave_idx_type i = a_len; i < nr; i++) result.elem (i) = 0.0; return result; } // other operations FloatComplex FloatComplexColumnVector::min (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; FloatComplex res = elem (0); float absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) < absres) { res = elem (i); absres = std::abs (res); } return res; } FloatComplex FloatComplexColumnVector::max (void) const { octave_idx_type len = length (); if (len == 0) return 0.0; FloatComplex res = elem (0); float absres = std::abs (res); for (octave_idx_type i = 1; i < len; i++) if (std::abs (elem (i)) > absres) { res = elem (i); absres = std::abs (res); } return res; } // i/o std::ostream& operator << (std::ostream& os, const FloatComplexColumnVector& a) { // int field_width = os.precision () + 7; for (octave_idx_type i = 0; i < a.length (); i++) os << /* setw (field_width) << */ a.elem (i) << "\n"; return os; } std::istream& operator >> (std::istream& is, FloatComplexColumnVector& a) { octave_idx_type len = a.length(); if (len > 0) { float tmp; for (octave_idx_type i = 0; i < len; i++) { is >> tmp; if (is) a.elem (i) = tmp; else break; } } return is; }