Mercurial > hg > octave-lyh
view libinterp/corefcn/ellipj.cc @ 16588:4d2b0104ee05
Add argument to ellipj for Matlab compatibility
* ellipj.cc: Allow third argument for compatibility, ignored for now.
author | Mike Miller <mtmiller@ieee.org> |
---|---|
date | Sun, 28 Apr 2013 19:35:10 -0400 |
parents | a3fdd6041e64 |
children | e2de3c8882be |
line wrap: on
line source
/* Copyright (C) 2001 Leopoldo Cerbaro <redbliss@libero.it> This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "lo-ieee.h" static void gripe_ellipj_arg (const char *arg) { error ("ellipj: expecting scalar or matrix as %s argument", arg); } static void sncndn (double u, double m, double& sn, double& cn, double& dn, double& err) { static const int Nmax = 16; double m1, t=0, si_u, co_u, se_u, ta_u, b, c[Nmax], a[Nmax], phi; int n, Nn, ii; if (m < 0 || m > 1) { warning ("ellipj: expecting 0 <= m <= 1"); /* -lc- */ sn = cn = dn = lo_ieee_nan_value (); return; } double sqrt_eps = sqrt (std::numeric_limits<double>::epsilon ()); if (m < sqrt_eps) { /* # For small m, ( Abramowitz and Stegun, Section 16.13 ) */ si_u = sin (u); co_u = cos (u); t = 0.25*m*(u - si_u*co_u); sn = si_u - t * co_u; cn = co_u + t * si_u; dn = 1 - 0.5*m*si_u*si_u; } else if ((1 - m) < sqrt_eps) { /* For m1 = (1-m) small ( Abramowitz and Stegun, Section 16.15 ) */ m1 = 1 - m; si_u = sinh (u); co_u = cosh (u); ta_u = tanh (u); se_u = 1/co_u; sn = ta_u + 0.25*m1*(si_u*co_u - u)*se_u*se_u; cn = se_u - 0.25*m1*(si_u*co_u - u)*ta_u*se_u; dn = se_u + 0.25*m1*(si_u*co_u + u)*ta_u*se_u; } else { /* // Arithmetic-Geometric Mean (AGM) algorithm // ( Abramowitz and Stegun, Section 16.4 ) */ a[0] = 1; b = sqrt (1 - m); c[0] = sqrt (m); for (n = 1; n < Nmax; ++n) { a[n] = (a[n - 1] + b)/2; c[n] = (a[n - 1] - b)/2; b = sqrt (a[n - 1]*b); if (c[n]/a[n] < std::numeric_limits<double>::epsilon ()) break; } if (n >= Nmax - 1) { err = 1; return; } Nn = n; for (ii = 1; n > 0; ii = ii*2, --n) ; // ii = pow(2,Nn) phi = ii*a[Nn]*u; for (n = Nn; n > 0; --n) { t = phi; phi = (asin ((c[n]/a[n])* sin (phi)) + phi)/2; } sn = sin (phi); cn = cos (phi); dn = cn/cos (t - phi); } } static void sncndn (Complex& u, double m, Complex& sn, Complex& cn, Complex& dn, double& err) { double m1 = 1 - m, ss1, cc1, dd1; sncndn (imag (u), m1, ss1, cc1, dd1, err); if (real (u) == 0) { /* u is pure imag: Jacoby imag. transf. */ sn = Complex (0, ss1/cc1); cn = 1/cc1; // cn.imag = 0; dn = dd1/cc1; // dn.imag = 0; } else { /* u is generic complex */ double ss, cc, dd, ddd; sncndn (real (u), m, ss, cc, dd, err); ddd = cc1*cc1 + m*ss*ss*ss1*ss1; sn = Complex (ss*dd1/ddd, cc*dd*ss1*cc1/ddd); cn = Complex (cc*cc1/ddd, -ss*dd*ss1*dd1/ddd); dn = Complex (dd*cc1*dd1/ddd, -m*ss*cc*ss1/ddd); } } DEFUN (ellipj, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {[@var{sn}, @var{cn}, @var{dn}, @var{err}] =} ellipj (@var{u}, @var{m})\n\ @deftypefnx {Built-in Function} {[@var{sn}, @var{cn}, @var{dn}, @var{err}] =} ellipj (@var{u}, @var{m}, @var{tol})\n\ Compute the Jacobi elliptic functions @var{sn}, @var{cn}, and @var{dn}\n\ of complex argument @var{u} and real parameter @var{m}.\n\ \n\ If @var{m} is a scalar, the results are the same size as @var{u}.\n\ If @var{u} is a scalar, the results are the same size as @var{m}.\n\ If @var{u} is a column vector and @var{m} is a row vector, the\n\ results are matrices with @code{length (@var{u})} rows and\n\ @code{length (@var{m})} columns. Otherwise, @var{u} and\n\ @var{m} must conform and the results will be the same size.\n\ \n\ The value of @var{u} may be complex.\n\ The value of @var{m} must be 0 <= m <= 1.\n\ \n\ @var{tol} is currently ignored (@sc{Matlab} uses this to allow faster,\n\ less accurate approximation).\n\ \n\ If requested, @var{err} contains the following status information\n\ and is the same size as the result.\n\ \n\ @enumerate 0\n\ @item\n\ Normal return.\n\ @item\n\ Error---no computation, algorithm termination condition not met,\n\ return @code{NaN}.\n\ @end enumerate\n\ Ref: Abramowitz, Milton and Stegun, Irene A\n\ Handbook of Mathematical Functions, Dover, 1965\n\ Chapter 16 (Sections 16.4, 16.13 and 16.15)\n\ @seealso{ellipke}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin < 2 || nargin > 3) { print_usage (); return retval; } octave_value u_arg = args(0); octave_value m_arg = args(1); if (m_arg.is_scalar_type ()) { double m = args(1).double_value (); if (error_state) { gripe_ellipj_arg ("second"); return retval; } if (u_arg.is_scalar_type ()) { if (u_arg.is_real_type ()) { // u real double u = args(0).double_value (); if (error_state) { gripe_ellipj_arg ("first"); return retval; } double sn, cn, dn; double err = 0; sncndn (u, m, sn, cn, dn, err); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } else { // u complex Complex u = u_arg.complex_value (); if (error_state) { gripe_ellipj_arg ("second"); return retval; } Complex sn, cn, dn; double err; sncndn (u, m, sn, cn, dn, err); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } } else { /* u is matrix ( m is scalar ) */ ComplexMatrix u = u_arg.complex_matrix_value (); if (error_state) { gripe_ellipj_arg ("first"); return retval; } octave_idx_type nr = u.rows (); octave_idx_type nc = u.cols (); ComplexMatrix sn (nr, nc), cn (nr, nc), dn (nr, nc); Matrix err (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) sncndn (u(i,j), m, sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } } else { Matrix m = args(1).matrix_value (); if (error_state) { gripe_ellipj_arg ("second"); return retval; } octave_idx_type mr = m.rows (); octave_idx_type mc = m.cols (); if (u_arg.is_scalar_type ()) { /* u is scalar */ octave_idx_type nr = m.rows (); octave_idx_type nc = m.cols (); Matrix err (nr, nc); if (u_arg.is_real_type ()) { double u = u_arg.double_value (); if (error_state) { gripe_ellipj_arg ("first"); return retval; } Matrix sn (nr, nc), cn (nr, nc), dn (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) sncndn (u, m(i,j), sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } else { Complex u = u_arg.complex_value (); if (error_state) { gripe_ellipj_arg ("first"); return retval; } ComplexMatrix sn (nr, nc), cn (nr, nc), dn (nr, nc); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) sncndn (u, m(i,j), sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } } else { // u is matrix (m is matrix) if (u_arg.is_real_type ()) { // u real matrix Matrix u = u_arg.matrix_value (); if (error_state) { gripe_ellipj_arg ("first "); return retval; } octave_idx_type ur = u.rows (); octave_idx_type uc = u.cols (); if (mr == 1 && uc == 1) { // u column, m row RowVector rm = m.row (0); ColumnVector cu = u.column (0); Matrix sn (ur, mc), cn (ur, mc), dn (ur, mc); Matrix err (ur,mc); for (octave_idx_type j = 0; j < mc; j++) for (octave_idx_type i = 0; i < ur; i++) sncndn (cu(i), rm(j), sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } else if (ur == mr && uc == mc) { Matrix sn (ur, mc), cn (ur, mc), dn (ur, mc); Matrix err (ur,mc); for (octave_idx_type j = 0; j < uc; j++) for (octave_idx_type i = 0; i < ur; i++) sncndn (u(i,j), m(i,j), sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } else error ("u m invalid"); } else { // u complex matrix ComplexMatrix u = u_arg.complex_matrix_value (); if (error_state) { gripe_ellipj_arg ("second"); return retval; } octave_idx_type ur = u.rows (); octave_idx_type uc = u.cols (); if (mr == 1 && uc == 1) { RowVector rm = m.row (0); ComplexColumnVector cu = u.column (0); ComplexMatrix sn (ur, mc), cn (ur, mc), dn (ur, mc); Matrix err (ur,mc); for (octave_idx_type j = 0; j < mc; j++) for (octave_idx_type i = 0; i < ur; i++) sncndn (cu(i), rm(j), sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } else if (ur == mr && uc == mc) { ComplexMatrix sn (ur, mc), cn (ur, mc), dn (ur, mc); Matrix err (ur,mc); for (octave_idx_type j = 0; j < uc; j++) for (octave_idx_type i = 0; i < ur; i++) sncndn (u(i,j), m(i,j), sn(i,j), cn(i,j), dn(i,j), err(i,j)); retval (0) = sn; retval (1) = cn; retval (2) = dn; if (nargout > 3) retval(3) = err; } else error ("u m invalid"); } } } // m matrix return retval; } /* ## demos taken from inst/ellipj.m %!demo %! N = 150; %! % m = [1-logspace(0,log(eps),N-1), 1]; ## m near 1 %! % m = [0, logspace(log(eps),0,N-1)]; ## m near 0 %! m = linspace(0,1,N); ## m equally spaced %! u = linspace(-20,20,N); %! M = ones(length(u),1) * m; %! U = u' * ones(1, length(m)); %! [sn, cn, dn] = ellipj(U,M); %! %! %% Plotting %! c = colormap(hot(64)); %! data = {sn,cn,dn}; %! dname = {"sn","cn","dn"}; %! for i=1:3 %! subplot(1,3,i); %! data{i}(data{i} > 1) = 1; %! data{i}(data{i} < -1) = -1; %! image(m,u,32*data{i}+32); %! title(dname{i}); %! end %! colormap(c); %!demo %! N = 200; %! % m = [1-logspace(0,log(eps),N-1), 1]; ## m near 1 %! % m = [0, logspace(log(eps),0,N-1)]; ## m near 0 %! m = linspace(0,1,N); ## m equally spaced %! u = linspace(0,20,5); %! M = ones(length(u),1) * m; %! U = u' * ones(1, length(m)); %! [sn, cn, dn] = ellipj(U,M); %! %! %% Plotting %! data = {sn,cn,dn}; %! dname = {"sn","cn","dn"}; %! for i=1:3 %! subplot(1,3,i); %! plot(m, data{i}); %! title(dname{i}); %! grid on; %! end */ /* ## tests taken from inst/test_sncndn.m %!test %! k = (tan(pi/8.))^2; m = k*k; %! SN = [ %! -1. + I * 0. , -0.8392965923 + 0. * I %! -1. + I * 0.2 , -0.8559363407 + 0.108250955 * I %! -1. + I * 0.4 , -0.906529758 + 0.2204040232 * I %! -1. + I * 0.6 , -0.9931306727 + 0.3403783409 * I %! -1. + I * 0.8 , -1.119268095 + 0.4720784944 * I %! -1. + I * 1. , -1.29010951 + 0.6192468708 * I %! -1. + I * 1.2 , -1.512691987 + 0.7850890595 * I %! -1. + I * 1.4 , -1.796200374 + 0.9714821804 * I %! -1. + I * 1.6 , -2.152201882 + 1.177446413 * I %! -1. + I * 1.8 , -2.594547417 + 1.396378892 * I %! -1. + I * 2. , -3.138145339 + 1.611394819 * I %! -0.8 + I * 0. , -0.7158157937 + 0. * I %! -0.8 + I * 0.2 , -0.7301746722 + 0.1394690862 * I %! -0.8 + I * 0.4 , -0.7738940898 + 0.2841710966 * I %! -0.8 + I * 0.6 , -0.8489542135 + 0.4394411376 * I %! -0.8 + I * 0.8 , -0.9588386397 + 0.6107824358 * I %! -0.8 + I * 1. , -1.108848724 + 0.8038415767 * I %! -0.8 + I * 1.2 , -1.306629972 + 1.024193359 * I %! -0.8 + I * 1.4 , -1.563010199 + 1.276740951 * I %! -0.8 + I * 1.6 , -1.893274688 + 1.564345558 * I %! -0.8 + I * 1.8 , -2.318944084 + 1.88491973 * I %! -0.8 + I * 2. , -2.869716809 + 2.225506523 * I %! -0.6 + I * 0. , -0.5638287208 + 0. * I %! -0.6 + I * 0.2 , -0.5752723012 + 0.1654722474 * I %! -0.6 + I * 0.4 , -0.610164314 + 0.3374004736 * I %! -0.6 + I * 0.6 , -0.6702507087 + 0.5224614298 * I %! -0.6 + I * 0.8 , -0.7586657365 + 0.7277663879 * I %! -0.6 + I * 1. , -0.8803349115 + 0.9610513652 * I %! -0.6 + I * 1.2 , -1.042696526 + 1.230800819 * I %! -0.6 + I * 1.4 , -1.256964505 + 1.546195843 * I %! -0.6 + I * 1.6 , -1.540333527 + 1.916612621 * I %! -0.6 + I * 1.8 , -1.919816065 + 2.349972151 * I %! -0.6 + I * 2. , -2.438761841 + 2.848129496 * I %! -0.4 + I * 0. , -0.3891382858 + 0. * I %! -0.4 + I * 0.2 , -0.3971152026 + 0.1850563793 * I %! -0.4 + I * 0.4 , -0.4214662882 + 0.3775700801 * I %! -0.4 + I * 0.6 , -0.4635087491 + 0.5853434119 * I %! -0.4 + I * 0.8 , -0.5256432877 + 0.8168992398 * I %! -0.4 + I * 1. , -0.611733177 + 1.081923504 * I %! -0.4 + I * 1.2 , -0.7278102331 + 1.391822501 * I %! -0.4 + I * 1.4 , -0.8833807998 + 1.760456461 * I %! -0.4 + I * 1.6 , -1.093891878 + 2.205107766 * I %! -0.4 + I * 1.8 , -1.385545188 + 2.747638761 * I %! -0.4 + I * 2. , -1.805081271 + 3.41525351 * I %! -0.2 + I * 0. , -0.1986311721 + 0. * I %! -0.2 + I * 0.2 , -0.2027299916 + 0.1972398665 * I %! -0.2 + I * 0.4 , -0.2152524522 + 0.402598347 * I %! -0.2 + I * 0.6 , -0.2369100139 + 0.6246336356 * I %! -0.2 + I * 0.8 , -0.2690115146 + 0.8728455227 * I %! -0.2 + I * 1. , -0.3136938773 + 1.158323088 * I %! -0.2 + I * 1.2 , -0.3743615191 + 1.494672508 * I %! -0.2 + I * 1.4 , -0.4565255082 + 1.899466033 * I %! -0.2 + I * 1.6 , -0.5694611346 + 2.39667232 * I %! -0.2 + I * 1.8 , -0.7296612675 + 3.020990664 * I %! -0.2 + I * 2. , -0.9685726188 + 3.826022536 * I %! 0. + I * 0. , 0. + 0. * I %! 0. + I * 0.2 , 0. + 0.201376364 * I %! 0. + I * 0.4 , 0. + 0.4111029248 * I %! 0. + I * 0.6 , 0. + 0.6380048435 * I %! 0. + I * 0.8 , 0. + 0.8919321473 * I %! 0. + I * 1. , 0. + 1.184486615 * I %! 0. + I * 1.2 , 0. + 1.530096023 * I %! 0. + I * 1.4 , 0. + 1.947754612 * I %! 0. + I * 1.6 , 0. + 2.464074356 * I %! 0. + I * 1.8 , 0. + 3.119049475 * I %! 0. + I * 2. , 0. + 3.97786237 * I %! 0.2 + I * 0. , 0.1986311721 + 0. * I %! 0.2 + I * 0.2 , 0.2027299916 + 0.1972398665 * I %! 0.2 + I * 0.4 , 0.2152524522 + 0.402598347 * I %! 0.2 + I * 0.6 , 0.2369100139 + 0.6246336356 * I %! 0.2 + I * 0.8 , 0.2690115146 + 0.8728455227 * I %! 0.2 + I * 1. , 0.3136938773 + 1.158323088 * I %! 0.2 + I * 1.2 , 0.3743615191 + 1.494672508 * I %! 0.2 + I * 1.4 , 0.4565255082 + 1.899466033 * I %! 0.2 + I * 1.6 , 0.5694611346 + 2.39667232 * I %! 0.2 + I * 1.8 , 0.7296612675 + 3.020990664 * I %! 0.2 + I * 2. , 0.9685726188 + 3.826022536 * I %! 0.4 + I * 0. , 0.3891382858 + 0. * I %! 0.4 + I * 0.2 , 0.3971152026 + 0.1850563793 * I %! 0.4 + I * 0.4 , 0.4214662882 + 0.3775700801 * I %! 0.4 + I * 0.6 , 0.4635087491 + 0.5853434119 * I %! 0.4 + I * 0.8 , 0.5256432877 + 0.8168992398 * I %! 0.4 + I * 1. , 0.611733177 + 1.081923504 * I %! 0.4 + I * 1.2 , 0.7278102331 + 1.391822501 * I %! 0.4 + I * 1.4 , 0.8833807998 + 1.760456461 * I %! 0.4 + I * 1.6 , 1.093891878 + 2.205107766 * I %! 0.4 + I * 1.8 , 1.385545188 + 2.747638761 * I %! 0.4 + I * 2. , 1.805081271 + 3.41525351 * I %! 0.6 + I * 0. , 0.5638287208 + 0. * I %! 0.6 + I * 0.2 , 0.5752723012 + 0.1654722474 * I %! 0.6 + I * 0.4 , 0.610164314 + 0.3374004736 * I %! 0.6 + I * 0.6 , 0.6702507087 + 0.5224614298 * I %! 0.6 + I * 0.8 , 0.7586657365 + 0.7277663879 * I %! 0.6 + I * 1. , 0.8803349115 + 0.9610513652 * I %! 0.6 + I * 1.2 , 1.042696526 + 1.230800819 * I %! 0.6 + I * 1.4 , 1.256964505 + 1.546195843 * I %! 0.6 + I * 1.6 , 1.540333527 + 1.916612621 * I %! 0.6 + I * 1.8 , 1.919816065 + 2.349972151 * I %! 0.6 + I * 2. , 2.438761841 + 2.848129496 * I %! 0.8 + I * 0. , 0.7158157937 + 0. * I %! 0.8 + I * 0.2 , 0.7301746722 + 0.1394690862 * I %! 0.8 + I * 0.4 , 0.7738940898 + 0.2841710966 * I %! 0.8 + I * 0.6 , 0.8489542135 + 0.4394411376 * I %! 0.8 + I * 0.8 , 0.9588386397 + 0.6107824358 * I %! 0.8 + I * 1. , 1.108848724 + 0.8038415767 * I %! 0.8 + I * 1.2 , 1.306629972 + 1.024193359 * I %! 0.8 + I * 1.4 , 1.563010199 + 1.276740951 * I %! 0.8 + I * 1.6 , 1.893274688 + 1.564345558 * I %! 0.8 + I * 1.8 , 2.318944084 + 1.88491973 * I %! 0.8 + I * 2. , 2.869716809 + 2.225506523 * I %! 1. + I * 0. , 0.8392965923 + 0. * I %! 1. + I * 0.2 , 0.8559363407 + 0.108250955 * I %! 1. + I * 0.4 , 0.906529758 + 0.2204040232 * I %! 1. + I * 0.6 , 0.9931306727 + 0.3403783409 * I %! 1. + I * 0.8 , 1.119268095 + 0.4720784944 * I %! 1. + I * 1. , 1.29010951 + 0.6192468708 * I %! 1. + I * 1.2 , 1.512691987 + 0.7850890595 * I %! 1. + I * 1.4 , 1.796200374 + 0.9714821804 * I %! 1. + I * 1.6 , 2.152201882 + 1.177446413 * I %! 1. + I * 1.8 , 2.594547417 + 1.396378892 * I %! 1. + I * 2. , 3.138145339 + 1.611394819 * I %! ]; %! CN = [ %! -1. + I * 0. , 0.5436738271 + 0. * I %! -1. + I * 0.2 , 0.5541219664 + 0.1672121517 * I %! -1. + I * 0.4 , 0.5857703552 + 0.3410940893 * I %! -1. + I * 0.6 , 0.6395034233 + 0.5285979063 * I %! -1. + I * 0.8 , 0.716688504 + 0.7372552987 * I %! -1. + I * 1. , 0.8189576795 + 0.9755037374 * I %! -1. + I * 1.2 , 0.9477661951 + 1.253049471 * I %! -1. + I * 1.4 , 1.103540657 + 1.581252712 * I %! -1. + I * 1.6 , 1.284098214 + 1.973449038 * I %! -1. + I * 1.8 , 1.481835651 + 2.4449211 * I %! -1. + I * 2. , 1.679032464 + 3.011729224 * I %! -0.8 + I * 0. , 0.6982891589 + 0. * I %! -0.8 + I * 0.2 , 0.71187169 + 0.1430549855 * I %! -0.8 + I * 0.4 , 0.7530744458 + 0.2920273465 * I %! -0.8 + I * 0.6 , 0.8232501212 + 0.4531616768 * I %! -0.8 + I * 0.8 , 0.9245978896 + 0.6334016187 * I %! -0.8 + I * 1. , 1.060030206 + 0.8408616109 * I %! -0.8 + I * 1.2 , 1.232861756 + 1.085475913 * I %! -0.8 + I * 1.4 , 1.446126965 + 1.379933558 * I %! -0.8 + I * 1.6 , 1.701139468 + 1.741030588 * I %! -0.8 + I * 1.8 , 1.994526268 + 2.191509596 * I %! -0.8 + I * 2. , 2.312257188 + 2.762051518 * I %! -0.6 + I * 0. , 0.8258917445 + 0. * I %! -0.6 + I * 0.2 , 0.842151698 + 0.1130337928 * I %! -0.6 + I * 0.4 , 0.8915487431 + 0.2309124769 * I %! -0.6 + I * 0.6 , 0.975948103 + 0.3588102098 * I %! -0.6 + I * 0.8 , 1.098499209 + 0.5026234141 * I %! -0.6 + I * 1. , 1.263676101 + 0.6695125973 * I %! -0.6 + I * 1.2 , 1.477275851 + 0.8687285705 * I %! -0.6 + I * 1.4 , 1.746262523 + 1.112955966 * I %! -0.6 + I * 1.6 , 2.078179075 + 1.420581466 * I %! -0.6 + I * 1.8 , 2.479425208 + 1.819580713 * I %! -0.6 + I * 2. , 2.950586798 + 2.354077344 * I %! -0.4 + I * 0. , 0.9211793498 + 0. * I %! -0.4 + I * 0.2 , 0.9395019377 + 0.07822091534 * I %! -0.4 + I * 0.4 , 0.9952345231 + 0.1598950363 * I %! -0.4 + I * 0.6 , 1.090715991 + 0.2487465067 * I %! -0.4 + I * 0.8 , 1.229998843 + 0.34910407 * I %! -0.4 + I * 1. , 1.419103868 + 0.4663848201 * I %! -0.4 + I * 1.2 , 1.666426377 + 0.607877235 * I %! -0.4 + I * 1.4 , 1.983347336 + 0.7841054404 * I %! -0.4 + I * 1.6 , 2.385101684 + 1.01134031 * I %! -0.4 + I * 1.8 , 2.89185416 + 1.316448705 * I %! -0.4 + I * 2. , 3.529393374 + 1.74670531 * I %! -0.2 + I * 0. , 0.9800743122 + 0. * I %! -0.2 + I * 0.2 , 0.9997019476 + 0.03999835809 * I %! -0.2 + I * 0.4 , 1.059453907 + 0.08179712295 * I %! -0.2 + I * 0.6 , 1.16200643 + 0.1273503824 * I %! -0.2 + I * 0.8 , 1.312066413 + 0.1789585449 * I %! -0.2 + I * 1. , 1.516804331 + 0.2395555269 * I %! -0.2 + I * 1.2 , 1.786613221 + 0.313189147 * I %! -0.2 + I * 1.4 , 2.136422971 + 0.405890925 * I %! -0.2 + I * 1.6 , 2.588021972 + 0.527357091 * I %! -0.2 + I * 1.8 , 3.174302819 + 0.6944201617 * I %! -0.2 + I * 2. , 3.947361147 + 0.9387994989 * I %! 0. + I * 0. , 1. + 0. * I %! 0. + I * 0.2 , 1.020074723 + 0. * I %! 0. + I * 0.4 , 1.08120563 + 0. * I %! 0. + I * 0.6 , 1.18619146 + 0. * I %! 0. + I * 0.8 , 1.339978715 + 0. * I %! 0. + I * 1. , 1.550164037 + 0. * I %! 0. + I * 1.2 , 1.827893279 + 0. * I %! 0. + I * 1.4 , 2.189462954 + 0. * I %! 0. + I * 1.6 , 2.659259752 + 0. * I %! 0. + I * 1.8 , 3.275434266 + 0. * I %! 0. + I * 2. , 4.101632484 + 0. * I %! 0.2 + I * 0. , 0.9800743122 + 0. * I %! 0.2 + I * 0.2 , 0.9997019476 - 0.03999835809 * I %! 0.2 + I * 0.4 , 1.059453907 - 0.08179712295 * I %! 0.2 + I * 0.6 , 1.16200643 - 0.1273503824 * I %! 0.2 + I * 0.8 , 1.312066413 - 0.1789585449 * I %! 0.2 + I * 1. , 1.516804331 - 0.2395555269 * I %! 0.2 + I * 1.2 , 1.786613221 - 0.313189147 * I %! 0.2 + I * 1.4 , 2.136422971 - 0.405890925 * I %! 0.2 + I * 1.6 , 2.588021972 - 0.527357091 * I %! 0.2 + I * 1.8 , 3.174302819 - 0.6944201617 * I %! 0.2 + I * 2. , 3.947361147 - 0.9387994989 * I %! 0.4 + I * 0. , 0.9211793498 + 0. * I %! 0.4 + I * 0.2 , 0.9395019377 - 0.07822091534 * I %! 0.4 + I * 0.4 , 0.9952345231 - 0.1598950363 * I %! 0.4 + I * 0.6 , 1.090715991 - 0.2487465067 * I %! 0.4 + I * 0.8 , 1.229998843 - 0.34910407 * I %! 0.4 + I * 1. , 1.419103868 - 0.4663848201 * I %! 0.4 + I * 1.2 , 1.666426377 - 0.607877235 * I %! 0.4 + I * 1.4 , 1.983347336 - 0.7841054404 * I %! 0.4 + I * 1.6 , 2.385101684 - 1.01134031 * I %! 0.4 + I * 1.8 , 2.89185416 - 1.316448705 * I %! 0.4 + I * 2. , 3.529393374 - 1.74670531 * I %! 0.6 + I * 0. , 0.8258917445 + 0. * I %! 0.6 + I * 0.2 , 0.842151698 - 0.1130337928 * I %! 0.6 + I * 0.4 , 0.8915487431 - 0.2309124769 * I %! 0.6 + I * 0.6 , 0.975948103 - 0.3588102098 * I %! 0.6 + I * 0.8 , 1.098499209 - 0.5026234141 * I %! 0.6 + I * 1. , 1.263676101 - 0.6695125973 * I %! 0.6 + I * 1.2 , 1.477275851 - 0.8687285705 * I %! 0.6 + I * 1.4 , 1.746262523 - 1.112955966 * I %! 0.6 + I * 1.6 , 2.078179075 - 1.420581466 * I %! 0.6 + I * 1.8 , 2.479425208 - 1.819580713 * I %! 0.6 + I * 2. , 2.950586798 - 2.354077344 * I %! 0.8 + I * 0. , 0.6982891589 + 0. * I %! 0.8 + I * 0.2 , 0.71187169 - 0.1430549855 * I %! 0.8 + I * 0.4 , 0.7530744458 - 0.2920273465 * I %! 0.8 + I * 0.6 , 0.8232501212 - 0.4531616768 * I %! 0.8 + I * 0.8 , 0.9245978896 - 0.6334016187 * I %! 0.8 + I * 1. , 1.060030206 - 0.8408616109 * I %! 0.8 + I * 1.2 , 1.232861756 - 1.085475913 * I %! 0.8 + I * 1.4 , 1.446126965 - 1.379933558 * I %! 0.8 + I * 1.6 , 1.701139468 - 1.741030588 * I %! 0.8 + I * 1.8 , 1.994526268 - 2.191509596 * I %! 0.8 + I * 2. , 2.312257188 - 2.762051518 * I %! 1. + I * 0. , 0.5436738271 + 0. * I %! 1. + I * 0.2 , 0.5541219664 - 0.1672121517 * I %! 1. + I * 0.4 , 0.5857703552 - 0.3410940893 * I %! 1. + I * 0.6 , 0.6395034233 - 0.5285979063 * I %! 1. + I * 0.8 , 0.716688504 - 0.7372552987 * I %! 1. + I * 1. , 0.8189576795 - 0.9755037374 * I %! 1. + I * 1.2 , 0.9477661951 - 1.253049471 * I %! 1. + I * 1.4 , 1.103540657 - 1.581252712 * I %! 1. + I * 1.6 , 1.284098214 - 1.973449038 * I %! 1. + I * 1.8 , 1.481835651 - 2.4449211 * I %! 1. + I * 2. , 1.679032464 - 3.011729224 * I %! ]; %! DN = [ %! -1. + I * 0. , 0.9895776106 + 0. * I %! -1. + I * 0.2 , 0.9893361555 + 0.002756935338 * I %! -1. + I * 0.4 , 0.9885716856 + 0.005949639805 * I %! -1. + I * 0.6 , 0.9871564855 + 0.01008044183 * I %! -1. + I * 0.8 , 0.9848512162 + 0.01579337596 * I %! -1. + I * 1. , 0.9812582484 + 0.02396648455 * I %! -1. + I * 1.2 , 0.9757399152 + 0.0358288294 * I %! -1. + I * 1.4 , 0.9672786056 + 0.0531049859 * I %! -1. + I * 1.6 , 0.954237868 + 0.0781744383 * I %! -1. + I * 1.8 , 0.933957524 + 0.1141918269 * I %! -1. + I * 2. , 0.9020917489 + 0.1650142936 * I %! -0.8 + I * 0. , 0.992429635 + 0. * I %! -0.8 + I * 0.2 , 0.9924147861 + 0.003020708044 * I %! -0.8 + I * 0.4 , 0.99236555 + 0.00652359532 * I %! -0.8 + I * 0.6 , 0.9922655715 + 0.0110676219 * I %! -0.8 + I * 0.8 , 0.9920785856 + 0.01737733806 * I %! -0.8 + I * 1. , 0.9917291795 + 0.02645738598 * I %! -0.8 + I * 1.2 , 0.9910606387 + 0.03974949378 * I %! -0.8 + I * 1.4 , 0.9897435004 + 0.05935252515 * I %! -0.8 + I * 1.6 , 0.987077644 + 0.08832675281 * I %! -0.8 + I * 1.8 , 0.9815667458 + 0.1310872821 * I %! -0.8 + I * 2. , 0.970020127 + 0.1938136793 * I %! -0.6 + I * 0. , 0.9953099088 + 0. * I %! -0.6 + I * 0.2 , 0.995526009 + 0.002814772354 * I %! -0.6 + I * 0.4 , 0.9962071136 + 0.006083312292 * I %! -0.6 + I * 0.6 , 0.9974557125 + 0.01033463525 * I %! -0.6 + I * 0.8 , 0.9994560563 + 0.01626207722 * I %! -0.6 + I * 1. , 1.00249312 + 0.02484336286 * I %! -0.6 + I * 1.2 , 1.006973922 + 0.0375167093 * I %! -0.6 + I * 1.4 , 1.013436509 + 0.05645315628 * I %! -0.6 + I * 1.6 , 1.022504295 + 0.08499262247 * I %! -0.6 + I * 1.8 , 1.034670023 + 0.1283564595 * I %! -0.6 + I * 2. , 1.049599899 + 0.194806122 * I %! -0.4 + I * 0. , 0.9977686897 + 0. * I %! -0.4 + I * 0.2 , 0.9981836165 + 0.002167241934 * I %! -0.4 + I * 0.4 , 0.9994946045 + 0.004686808612 * I %! -0.4 + I * 0.6 , 1.001910789 + 0.00797144174 * I %! -0.4 + I * 0.8 , 1.005817375 + 0.01256717724 * I %! -0.4 + I * 1. , 1.011836374 + 0.01925509038 * I %! -0.4 + I * 1.2 , 1.020923572 + 0.02920828367 * I %! -0.4 + I * 1.4 , 1.034513743 + 0.04425213602 * I %! -0.4 + I * 1.6 , 1.054725746 + 0.06732276244 * I %! -0.4 + I * 1.8 , 1.08462027 + 0.1033236812 * I %! -0.4 + I * 2. , 1.128407402 + 0.1608240664 * I %! -0.2 + I * 0. , 0.9994191176 + 0. * I %! -0.2 + I * 0.2 , 0.9999683719 + 0.001177128019 * I %! -0.2 + I * 0.4 , 1.001705496 + 0.00254669712 * I %! -0.2 + I * 0.6 , 1.004913944 + 0.004334880912 * I %! -0.2 + I * 0.8 , 1.010120575 + 0.006842775622 * I %! -0.2 + I * 1. , 1.018189543 + 0.01050520136 * I %! -0.2 + I * 1.2 , 1.030482479 + 0.01598431001 * I %! -0.2 + I * 1.4 , 1.049126108 + 0.02433134655 * I %! -0.2 + I * 1.6 , 1.077466003 + 0.0372877718 * I %! -0.2 + I * 1.8 , 1.120863308 + 0.05789156398 * I %! -0.2 + I * 2. , 1.188162088 + 0.09181238708 * I %! 0. + I * 0. , 1. + 0. * I %! 0. + I * 0.2 , 1.000596698 + 0. * I %! 0. + I * 0.4 , 1.002484444 + 0. * I %! 0. + I * 0.6 , 1.005973379 + 0. * I %! 0. + I * 0.8 , 1.011641536 + 0. * I %! 0. + I * 1. , 1.020441432 + 0. * I %! 0. + I * 1.2 , 1.033885057 + 0. * I %! 0. + I * 1.4 , 1.054361188 + 0. * I %! 0. + I * 1.6 , 1.085694733 + 0. * I %! 0. + I * 1.8 , 1.134186672 + 0. * I %! 0. + I * 2. , 1.210701071 + 0. * I %! 0.2 + I * 0. , 0.9994191176 + 0. * I %! 0.2 + I * 0.2 , 0.9999683719 - 0.001177128019 * I %! 0.2 + I * 0.4 , 1.001705496 - 0.00254669712 * I %! 0.2 + I * 0.6 , 1.004913944 - 0.004334880912 * I %! 0.2 + I * 0.8 , 1.010120575 - 0.006842775622 * I %! 0.2 + I * 1. , 1.018189543 - 0.01050520136 * I %! 0.2 + I * 1.2 , 1.030482479 - 0.01598431001 * I %! 0.2 + I * 1.4 , 1.049126108 - 0.02433134655 * I %! 0.2 + I * 1.6 , 1.077466003 - 0.0372877718 * I %! 0.2 + I * 1.8 , 1.120863308 - 0.05789156398 * I %! 0.2 + I * 2. , 1.188162088 - 0.09181238708 * I %! 0.4 + I * 0. , 0.9977686897 + 0. * I %! 0.4 + I * 0.2 , 0.9981836165 - 0.002167241934 * I %! 0.4 + I * 0.4 , 0.9994946045 - 0.004686808612 * I %! 0.4 + I * 0.6 , 1.001910789 - 0.00797144174 * I %! 0.4 + I * 0.8 , 1.005817375 - 0.01256717724 * I %! 0.4 + I * 1. , 1.011836374 - 0.01925509038 * I %! 0.4 + I * 1.2 , 1.020923572 - 0.02920828367 * I %! 0.4 + I * 1.4 , 1.034513743 - 0.04425213602 * I %! 0.4 + I * 1.6 , 1.054725746 - 0.06732276244 * I %! 0.4 + I * 1.8 , 1.08462027 - 0.1033236812 * I %! 0.4 + I * 2. , 1.128407402 - 0.1608240664 * I %! 0.6 + I * 0. , 0.9953099088 + 0. * I %! 0.6 + I * 0.2 , 0.995526009 - 0.002814772354 * I %! 0.6 + I * 0.4 , 0.9962071136 - 0.006083312292 * I %! 0.6 + I * 0.6 , 0.9974557125 - 0.01033463525 * I %! 0.6 + I * 0.8 , 0.9994560563 - 0.01626207722 * I %! 0.6 + I * 1. , 1.00249312 - 0.02484336286 * I %! 0.6 + I * 1.2 , 1.006973922 - 0.0375167093 * I %! 0.6 + I * 1.4 , 1.013436509 - 0.05645315628 * I %! 0.6 + I * 1.6 , 1.022504295 - 0.08499262247 * I %! 0.6 + I * 1.8 , 1.034670023 - 0.1283564595 * I %! 0.6 + I * 2. , 1.049599899 - 0.194806122 * I %! 0.8 + I * 0. , 0.992429635 + 0. * I %! 0.8 + I * 0.2 , 0.9924147861 - 0.003020708044 * I %! 0.8 + I * 0.4 , 0.99236555 - 0.00652359532 * I %! 0.8 + I * 0.6 , 0.9922655715 - 0.0110676219 * I %! 0.8 + I * 0.8 , 0.9920785856 - 0.01737733806 * I %! 0.8 + I * 1. , 0.9917291795 - 0.02645738598 * I %! 0.8 + I * 1.2 , 0.9910606387 - 0.03974949378 * I %! 0.8 + I * 1.4 , 0.9897435004 - 0.05935252515 * I %! 0.8 + I * 1.6 , 0.987077644 - 0.08832675281 * I %! 0.8 + I * 1.8 , 0.9815667458 - 0.1310872821 * I %! 0.8 + I * 2. , 0.970020127 - 0.1938136793 * I %! 1. + I * 0. , 0.9895776106 + 0. * I %! 1. + I * 0.2 , 0.9893361555 - 0.002756935338 * I %! 1. + I * 0.4 , 0.9885716856 - 0.005949639805 * I %! 1. + I * 0.6 , 0.9871564855 - 0.01008044183 * I %! 1. + I * 0.8 , 0.9848512162 - 0.01579337596 * I %! 1. + I * 1. , 0.9812582484 - 0.02396648455 * I %! 1. + I * 1.2 , 0.9757399152 - 0.0358288294 * I %! 1. + I * 1.4 , 0.9672786056 - 0.0531049859 * I %! 1. + I * 1.6 , 0.954237868 - 0.0781744383 * I %! 1. + I * 1.8 , 0.933957524 - 0.1141918269 * I %! 1. + I * 2. , 0.9020917489 - 0.1650142936 * I %! ]; %! tol = 1e-9; %! for x = 0:10 %! for y = 0:10 %! ur = -1 + x * 0.2; %! ui = y * 0.2; %! ii = 1 + y + x*11; %! [sn, cn, dn] = ellipj (ur + I * ui, m); %! assert (SN (ii, 2), sn, tol); %! assert (CN (ii, 2), cn, tol); %! assert (DN (ii, 2), dn, tol); %! endfor %! endfor ## tests taken from test_ellipj.m %!test %! u1 = pi/3; m1 = 0; %! res1 = [sin(pi/3), cos(pi/3), 1]; %! [sn,cn,dn]=ellipj(u1,m1); %! assert([sn,cn,dn], res1, 10*eps); %!test %! u2 = log(2); m2 = 1; %! res2 = [ 3/5, 4/5, 4/5 ]; %! [sn,cn,dn]=ellipj(u2,m2); %! assert([sn,cn,dn], res2, 10*eps); %!test %! u3 = log(2)*1i; m3 = 0; %! res3 = [3i/4,5/4,1]; %! [sn,cn,dn]=ellipj(u3,m3); %! assert([sn,cn,dn], res3, 10*eps); %!test %! u4 = -1; m4 = tan(pi/8)^4; %! res4 = [-0.8392965923,0.5436738271,0.9895776106]; %! [sn,cn,dn]=ellipj(u4, m4); %! assert([sn,cn,dn], res4, 1e-10); %!test %! u5 = -0.2 + 0.4i; m5 = tan(pi/8)^4; %! res5 = [ -0.2152524522 + 0.402598347i, ... %! 1.059453907 + 0.08179712295i, ... %! 1.001705496 + 0.00254669712i ]; %! [sn,cn,dn]=ellipj(u5,m5); %! assert([sn,cn,dn], res5, 1e-9); %!test %! u6 = 0.2 + 0.6i; m6 = tan(pi/8)^4; %! res6 = [ 0.2369100139 + 0.624633635i, ... %! 1.16200643 - 0.1273503824i, ... %! 1.004913944 - 0.004334880912i ]; %! [sn,cn,dn]=ellipj(u6,m6); %! assert([sn,cn,dn], res6, 1e-8); %!test %! u7 = 0.8 + 0.8i; m7 = tan(pi/8)^4; %! res7 = [0.9588386397 + 0.6107824358i, ... %! 0.9245978896 - 0.6334016187i, ... %! 0.9920785856 - 0.01737733806i ]; %! [sn,cn,dn]=ellipj(u7,m7); %! assert([sn,cn,dn], res7, 1e-10); %!test %! u=[0,pi/6,pi/4,pi/2]; m=0; %! res = [0,1/2,1/sqrt(2),1;1,cos(pi/6),1/sqrt(2),0;1,1,1,1]; %! [sn,cn,dn]=ellipj(u,m); %! assert([sn;cn;dn],res, 100*eps); %! [sn,cn,dn]=ellipj(u',0); %! assert([sn,cn,dn],res', 100*eps); ## XXX FIXME XXX ## need to check [real,complex]x[scalar,rowvec,colvec,matrix]x[u,m] %!test %! ## Test Jacobi elliptic functions %! ## against "exact" solution from Mathematica 3.0 %! ## David Billinghurst <David.Billinghurst@riotinto.com> %! ## 1 February 2001 %! u = [ 0.25; 0.25; 0.20; 0.20; 0.672; 0.5]; %! m = [ 0.0; 1.0; 0.19; 0.81; 0.36; 0.9999999999]; %! S = [ sin(0.25); tanh(0.25); %! 0.19842311013970879516; %! 0.19762082367187648571; %! 0.6095196917919021945; %! 0.4621171572617320908 ]; %! C = [ cos(0.25); sech(0.25); %! 0.9801164570409401062; %! 0.9802785369736752032; %! 0.7927709286533560550; %! 0.8868188839691764094 ]; %! D = [ 1.0; sech(0.25); %! 0.9962526643271134302; %! 0.9840560289645665155; %! 0.9307281387786906491; %! 0.8868188839812167635 ]; %! [sn,cn,dn] = ellipj(u,m); %! assert(sn,S,8*eps); %! assert(cn,C,8*eps); %! assert(dn,D,8*eps); %!error ellipj () %!error ellipj (1) %!error ellipj (1,2,3,4) */