view scripts/sparse/spaugment.m @ 14327:4d917a6a858b stable

doc: Use Octave coding conventions in @example blocks of docstrings. * accumarray.m, accumdim.m, bar.m, base2dec.m, bincoeff.m, bitcmp.m, bitset.m, celldisp.m, chop.m, clabel.m, cloglog.m, colon.m, compass.m, computer.m, contour3.m, contourc.m, corr.m, cstrcat.m, ctime.m, cylinder.m, date.m, dec2base.m, demo.m, dir.m, dlmwrite.m, expm.m, ezcontourf.m, ezcontour.m, ezmeshc.m, ezmesh.m, ezplot.m, ezsurfc.m, ezsurf.m, feather.m, findobj.m, flipdim.m, fplot.m, genvarname.m, getfield.m, hankel.m, hilb.m, hist.m, idivide.m, index.m, int2str.m, interp1.m, is_leap_year.m, ismember.m, isocolors.m, isonormals.m, isosurface.m, kurtosis.m, legendre.m, linkprop.m, logit.m, logm.m, __makeinfo__.m, __marching_cube__.m, median.m, mkoctfile.m, moment.m, mpoles.m, orderfields.m, pcg.m, pcr.m, plot3.m, plotmatrix.m, polyaffine.m, polygcd.m, poly.m, polyout.m, print.m, qp.m, quadgk.m, qzhess.m, randi.m, rat.m, refreshdata.m, residue.m, rose.m, rot90.m, saveas.m, saveobj.m, shiftdim.m, skewness.m, spaugment.m, spdiags.m, sqp.m, stem.m, str2num.m, strcat.m, strjust.m, strread.m, strsplit.m, structfun.m, subplot.m, subsindex.m, substruct.m, surfl.m, surfnorm.m, svds.m, uimenu.m, union.m, voronoi.m, warning_ids.m, wblpdf.m: Use Octave coding conventions in @example blocks of docstrings.
author Rik <octave@nomad.inbox5.com>
date Sat, 04 Feb 2012 22:12:50 -0800
parents 72c96de7a403
children f3d52523cde1
line wrap: on
line source

## Copyright (C) 2008-2012 David Bateman
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{s} =} spaugment (@var{A}, @var{c})
## Create the augmented matrix of @var{A}.  This is given by
##
## @example
## @group
## [@var{c} * eye(@var{m}, @var{m}), @var{A};
##             @var{A}', zeros(@var{n}, @var{n})]
## @end group
## @end example
##
## @noindent
## This is related to the least squares solution of
## @code{@var{A} \ @var{b}}, by
##
## @example
## @group
## @var{s} * [ @var{r} / @var{c}; x] = [ @var{b}, zeros(@var{n}, columns(@var{b})) ]
## @end group
## @end example
##
## @noindent
## where @var{r} is the residual error
##
## @example
## @var{r} = @var{b} - @var{A} * @var{x}
## @end example
##
## As the matrix @var{s} is symmetric indefinite it can be factorized
## with @code{lu}, and the minimum norm solution can therefore be found
## without the need for a @code{qr} factorization.  As the residual
## error will be @code{zeros (@var{m}, @var{m})} for under determined
## problems, and example can be
##
## @example
## @group
## m = 11; n = 10; mn = max (m, n);
## A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
##              [-1, 0, 1], m, n);
## x0 = A \ ones (m,1);
## s = spaugment (A);
## [L, U, P, Q] = lu (s);
## x1 = Q * (U \ (L \ (P  * [ones(m,1); zeros(n,1)])));
## x1 = x1(end - n + 1 : end);
## @end group
## @end example
##
## To find the solution of an overdetermined problem needs an estimate
## of the residual error @var{r} and so it is more complex to formulate
## a minimum norm solution using the @code{spaugment} function.
##
## In general the left division operator is more stable and faster than
## using the @code{spaugment} function.
## @end deftypefn

function s = spaugment (A, c)
  if (nargin < 2)
    if (issparse (A))
      c = max (max (abs (A))) / 1000;
    else
      if (ndims (A) != 2)
        error ("spaugment: expecting 2-dimenisional matrix");
      else
        c = max (abs (A(:))) / 1000;
      endif
    endif
  elseif (!isscalar (c))
    error ("spaugment: C must be a scalar");
  endif

  [m, n] = size (A);
  s = [ c * speye(m, m), A; A', sparse(n, n)];
endfunction

%!testif HAVE_UMFPACK
%! m = 11; n = 10; mn = max(m ,n);
%! A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],[-1,0,1], m, n);
%! x0 = A \ ones (m,1);
%! s = spaugment (A);
%! [L, U, P, Q] = lu (s);
%! x1 = Q * (U \ (L \ (P  * [ones(m,1); zeros(n,1)])));
%! x1 = x1(end - n + 1 : end);
%! assert (x1, x0, 1e-6)