Mercurial > hg > octave-lyh
view scripts/linear-algebra/duplication_matrix.m @ 17524:534247e14b03
Merge the official development
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 03:01:11 +0800 |
parents | a4969508008e |
children |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} duplication_matrix (@var{n}) ## Return the duplication matrix ## @tex ## $D_n$ ## @end tex ## @ifnottex ## @nospell{@math{Dn}} ## @end ifnottex ## which is the unique ## @tex ## $n^2 \times n(n+1)/2$ ## @end tex ## @ifnottex ## @math{n^2} by @math{n*(n+1)/2} ## @end ifnottex ## matrix such that ## @tex ## $D_n * {\rm vech} (A) = {\rm vec} (A)$ ## @end tex ## @ifnottex ## @nospell{@math{Dn vech (A) = vec (A)}} ## @end ifnottex ## for all symmetric ## @tex ## $n \times n$ ## @end tex ## @ifnottex ## @math{n} by @math{n} ## @end ifnottex ## matrices ## @tex ## $A$. ## @end tex ## @ifnottex ## @math{A}. ## @end ifnottex ## ## See Magnus and Neudecker (1988), Matrix differential calculus with ## applications in statistics and econometrics. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 8 May 1995 ## Adapged-By: jwe function d = duplication_matrix (n) if (nargin != 1) print_usage (); endif if (! (isscalar (n) && n > 0 && n == fix (n))) error ("duplication_matrix: N must be a positive integer"); endif d = zeros (n * n, n * (n + 1) / 2); ## It is clearly possible to make this a LOT faster! count = 0; for j = 1 : n d ((j - 1) * n + j, count + j) = 1; for i = (j + 1) : n d ((j - 1) * n + i, count + i) = 1; d ((i - 1) * n + j, count + i) = 1; endfor count = count + n - j; endfor endfunction %!test %! N = 2; %! A = rand (N); %! B = A * A'; %! C = A + A'; %! D = duplication_matrix (N); %! assert (D * vech (B), vec (B), 1e-6); %! assert (D * vech (C), vec (C), 1e-6); %!test %! N = 3; %! A = rand (N); %! B = A * A'; %! C = A + A'; %! D = duplication_matrix (N); %! assert (D * vech (B), vec (B), 1e-6); %! assert (D * vech (C), vec (C), 1e-6); %!test %! N = 4; %! A = rand (N); %! B = A * A'; %! C = A + A'; %! D = duplication_matrix (N); %! assert (D * vech (B), vec (B), 1e-6); %! assert (D * vech (C), vec (C), 1e-6); %!error duplication_matrix () %!error duplication_matrix (0.5) %!error duplication_matrix (-1) %!error duplication_matrix (ones (1,4))