Mercurial > hg > octave-lyh
view liboctave/numeric/lo-specfun.cc @ 17532:578805a293e5
ellipj: Move numerical code into liboctave
* lo-specfun.cc, lo-specfun.h (ellipj): New functions, adapted from
Fellipj.
* ellipj.cc (Fellipj): Call ellipj. (do_ellipj): Delete.
author | Mike Miller <mtmiller@ieee.org> |
---|---|
date | Thu, 26 Sep 2013 21:34:26 -0400 |
parents | cd115ec92248 |
children |
line wrap: on
line source
/* Copyright (C) 1996-2012 John W. Eaton Copyright (C) 2010 Jaroslav Hajek Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "Range.h" #include "CColVector.h" #include "CMatrix.h" #include "dRowVector.h" #include "dMatrix.h" #include "dNDArray.h" #include "CNDArray.h" #include "fCColVector.h" #include "fCMatrix.h" #include "fRowVector.h" #include "fMatrix.h" #include "fNDArray.h" #include "fCNDArray.h" #include "f77-fcn.h" #include "lo-error.h" #include "lo-ieee.h" #include "lo-specfun.h" #include "mx-inlines.cc" #include "lo-mappers.h" #include "Faddeeva.hh" extern "C" { F77_RET_T F77_FUNC (zbesj, ZBESJ) (const double&, const double&, const double&, const octave_idx_type&, const octave_idx_type&, double*, double*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (zbesy, ZBESY) (const double&, const double&, const double&, const octave_idx_type&, const octave_idx_type&, double*, double*, octave_idx_type&, double*, double*, octave_idx_type&); F77_RET_T F77_FUNC (zbesi, ZBESI) (const double&, const double&, const double&, const octave_idx_type&, const octave_idx_type&, double*, double*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (zbesk, ZBESK) (const double&, const double&, const double&, const octave_idx_type&, const octave_idx_type&, double*, double*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (zbesh, ZBESH) (const double&, const double&, const double&, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, double*, double*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (cbesj, cBESJ) (const FloatComplex&, const float&, const octave_idx_type&, const octave_idx_type&, FloatComplex*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (cbesy, CBESY) (const FloatComplex&, const float&, const octave_idx_type&, const octave_idx_type&, FloatComplex*, octave_idx_type&, FloatComplex*, octave_idx_type&); F77_RET_T F77_FUNC (cbesi, CBESI) (const FloatComplex&, const float&, const octave_idx_type&, const octave_idx_type&, FloatComplex*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (cbesk, CBESK) (const FloatComplex&, const float&, const octave_idx_type&, const octave_idx_type&, FloatComplex*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (cbesh, CBESH) (const FloatComplex&, const float&, const octave_idx_type&, const octave_idx_type&, const octave_idx_type&, FloatComplex*, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (zairy, ZAIRY) (const double&, const double&, const octave_idx_type&, const octave_idx_type&, double&, double&, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (cairy, CAIRY) (const float&, const float&, const octave_idx_type&, const octave_idx_type&, float&, float&, octave_idx_type&, octave_idx_type&); F77_RET_T F77_FUNC (zbiry, ZBIRY) (const double&, const double&, const octave_idx_type&, const octave_idx_type&, double&, double&, octave_idx_type&); F77_RET_T F77_FUNC (cbiry, CBIRY) (const float&, const float&, const octave_idx_type&, const octave_idx_type&, float&, float&, octave_idx_type&); F77_RET_T F77_FUNC (xdacosh, XDACOSH) (const double&, double&); F77_RET_T F77_FUNC (xacosh, XACOSH) (const float&, float&); F77_RET_T F77_FUNC (xdasinh, XDASINH) (const double&, double&); F77_RET_T F77_FUNC (xasinh, XASINH) (const float&, float&); F77_RET_T F77_FUNC (xdatanh, XDATANH) (const double&, double&); F77_RET_T F77_FUNC (xatanh, XATANH) (const float&, float&); F77_RET_T F77_FUNC (xderf, XDERF) (const double&, double&); F77_RET_T F77_FUNC (xerf, XERF) (const float&, float&); F77_RET_T F77_FUNC (xderfc, XDERFC) (const double&, double&); F77_RET_T F77_FUNC (xerfc, XERFC) (const float&, float&); F77_RET_T F77_FUNC (xdbetai, XDBETAI) (const double&, const double&, const double&, double&); F77_RET_T F77_FUNC (xbetai, XBETAI) (const float&, const float&, const float&, float&); F77_RET_T F77_FUNC (xdgamma, XDGAMMA) (const double&, double&); F77_RET_T F77_FUNC (xgamma, XGAMMA) (const float&, float&); F77_RET_T F77_FUNC (xgammainc, XGAMMAINC) (const double&, const double&, double&); F77_RET_T F77_FUNC (xsgammainc, XSGAMMAINC) (const float&, const float&, float&); F77_RET_T F77_FUNC (dlgams, DLGAMS) (const double&, double&, double&); F77_RET_T F77_FUNC (algams, ALGAMS) (const float&, float&, float&); } #if !defined (HAVE_ACOSH) double acosh (double x) { double retval; F77_XFCN (xdacosh, XDACOSH, (x, retval)); return retval; } #endif #if !defined (HAVE_ACOSHF) float acoshf (float x) { float retval; F77_XFCN (xacosh, XACOSH, (x, retval)); return retval; } #endif #if !defined (HAVE_ASINH) double asinh (double x) { double retval; F77_XFCN (xdasinh, XDASINH, (x, retval)); return retval; } #endif #if !defined (HAVE_ASINHF) float asinhf (float x) { float retval; F77_XFCN (xasinh, XASINH, (x, retval)); return retval; } #endif #if !defined (HAVE_ATANH) double atanh (double x) { double retval; F77_XFCN (xdatanh, XDATANH, (x, retval)); return retval; } #endif #if !defined (HAVE_ATANHF) float atanhf (float x) { float retval; F77_XFCN (xatanh, XATANH, (x, retval)); return retval; } #endif #if !defined (HAVE_ERF) double erf (double x) { double retval; F77_XFCN (xderf, XDERF, (x, retval)); return retval; } #endif #if !defined (HAVE_ERFF) float erff (float x) { float retval; F77_XFCN (xerf, XERF, (x, retval)); return retval; } #endif #if !defined (HAVE_ERFC) double erfc (double x) { double retval; F77_XFCN (xderfc, XDERFC, (x, retval)); return retval; } #endif #if !defined (HAVE_ERFCF) float erfcf (float x) { float retval; F77_XFCN (xerfc, XERFC, (x, retval)); return retval; } #endif // Complex error function from the Faddeeva package Complex erf (const Complex& x) { return Faddeeva::erf (x); } FloatComplex erf (const FloatComplex& x) { Complex xd (real (x), imag (x)); Complex ret = Faddeeva::erf (xd, std::numeric_limits<float>::epsilon ()); return FloatComplex (real (ret), imag (ret)); } // Complex complementary error function from the Faddeeva package Complex erfc (const Complex& x) { return Faddeeva::erfc (x); } FloatComplex erfc (const FloatComplex& x) { Complex xd (real (x), imag (x)); Complex ret = Faddeeva::erfc (xd, std::numeric_limits<float>::epsilon ()); return FloatComplex (real (ret), imag (ret)); } // Real and complex scaled complementary error function from Faddeeva package float erfcx (float x) { return Faddeeva::erfcx(x); } double erfcx (double x) { return Faddeeva::erfcx(x); } Complex erfcx (const Complex& x) { return Faddeeva::erfcx (x); } FloatComplex erfcx (const FloatComplex& x) { Complex xd (real (x), imag (x)); Complex ret = Faddeeva::erfcx (xd, std::numeric_limits<float>::epsilon ()); return FloatComplex (real (ret), imag (ret)); } // Real and complex imaginary error function from Faddeeva package float erfi (float x) { return Faddeeva::erfi(x); } double erfi (double x) { return Faddeeva::erfi(x); } Complex erfi (const Complex& x) { return Faddeeva::erfi (x); } FloatComplex erfi (const FloatComplex& x) { Complex xd (real (x), imag (x)); Complex ret = Faddeeva::erfi (xd, std::numeric_limits<float>::epsilon ()); return FloatComplex (real (ret), imag (ret)); } // Real and complex Dawson function (= scaled erfi) from Faddeeva package float dawson (float x) { return Faddeeva::Dawson(x); } double dawson (double x) { return Faddeeva::Dawson(x); } Complex dawson (const Complex& x) { return Faddeeva::Dawson (x); } FloatComplex dawson (const FloatComplex& x) { Complex xd (real (x), imag (x)); Complex ret = Faddeeva::Dawson (xd, std::numeric_limits<float>::epsilon ()); return FloatComplex (real (ret), imag (ret)); } double xgamma (double x) { double result; if (xisnan (x)) result = x; else if ((x <= 0 && D_NINT (x) == x) || xisinf (x)) result = octave_Inf; else #if defined (HAVE_TGAMMA) result = tgamma (x); #else F77_XFCN (xdgamma, XDGAMMA, (x, result)); #endif return result; } double xlgamma (double x) { #if defined (HAVE_LGAMMA) return lgamma (x); #else double result; double sgngam; if (xisnan (x)) result = x; else if ((x <= 0 && D_NINT (x) == x) || xisinf (x)) result = octave_Inf; else F77_XFCN (dlgams, DLGAMS, (x, result, sgngam)); return result; #endif } Complex rc_lgamma (double x) { double result; #if defined (HAVE_LGAMMA_R) int sgngam; result = lgamma_r (x, &sgngam); #else double sgngam; if (xisnan (x)) result = x; else if ((x <= 0 && D_NINT (x) == x) || xisinf (x)) result = octave_Inf; else F77_XFCN (dlgams, DLGAMS, (x, result, sgngam)); #endif if (sgngam < 0) return result + Complex (0., M_PI); else return result; } float xgamma (float x) { float result; if (xisnan (x)) result = x; else if ((x <= 0 && D_NINT (x) == x) || xisinf (x)) result = octave_Float_Inf; else #if defined (HAVE_TGAMMAF) result = tgammaf (x); #else F77_XFCN (xgamma, XGAMMA, (x, result)); #endif return result; } float xlgamma (float x) { #if defined (HAVE_LGAMMAF) return lgammaf (x); #else float result; float sgngam; if (xisnan (x)) result = x; else if ((x <= 0 && D_NINT (x) == x) || xisinf (x)) result = octave_Float_Inf; else F77_XFCN (algams, ALGAMS, (x, result, sgngam)); return result; #endif } FloatComplex rc_lgamma (float x) { float result; #if defined (HAVE_LGAMMAF_R) int sgngam; result = lgammaf_r (x, &sgngam); #else float sgngam; if (xisnan (x)) result = x; else if ((x <= 0 && D_NINT (x) == x) || xisinf (x)) result = octave_Float_Inf; else F77_XFCN (algams, ALGAMS, (x, result, sgngam)); #endif if (sgngam < 0) return result + FloatComplex (0., M_PI); else return result; } #if !defined (HAVE_EXPM1) double expm1 (double x) { double retval; double ax = fabs (x); if (ax < 0.1) { ax /= 16; // use Taylor series to calculate exp(x)-1. double t = ax; double s = 0; for (int i = 2; i < 7; i++) s += (t *= ax/i); s += ax; // use the identity (a+1)^2-1 = a*(a+2) double e = s; for (int i = 0; i < 4; i++) { s *= e + 2; e *= e + 2; } retval = (x > 0) ? s : -s / (1+s); } else retval = exp (x) - 1; return retval; } #endif Complex expm1 (const Complex& x) { Complex retval; if (std:: abs (x) < 1) { double im = x.imag (); double u = expm1 (x.real ()); double v = sin (im/2); v = -2*v*v; retval = Complex (u*v + u + v, (u+1) * sin (im)); } else retval = std::exp (x) - Complex (1); return retval; } #if !defined (HAVE_EXPM1F) float expm1f (float x) { float retval; float ax = fabs (x); if (ax < 0.1) { ax /= 16; // use Taylor series to calculate exp(x)-1. float t = ax; float s = 0; for (int i = 2; i < 7; i++) s += (t *= ax/i); s += ax; // use the identity (a+1)^2-1 = a*(a+2) float e = s; for (int i = 0; i < 4; i++) { s *= e + 2; e *= e + 2; } retval = (x > 0) ? s : -s / (1+s); } else retval = exp (x) - 1; return retval; } #endif FloatComplex expm1 (const FloatComplex& x) { FloatComplex retval; if (std:: abs (x) < 1) { float im = x.imag (); float u = expm1 (x.real ()); float v = sin (im/2); v = -2*v*v; retval = FloatComplex (u*v + u + v, (u+1) * sin (im)); } else retval = std::exp (x) - FloatComplex (1); return retval; } #if !defined (HAVE_LOG1P) double log1p (double x) { double retval; double ax = fabs (x); if (ax < 0.2) { // use approximation log (1+x) ~ 2*sum ((x/(2+x)).^ii ./ ii), ii = 1:2:2n+1 double u = x / (2 + x), t = 1, s = 0; for (int i = 2; i < 12; i += 2) s += (t *= u*u) / (i+1); retval = 2 * (s + 1) * u; } else retval = log (1 + x); return retval; } #endif Complex log1p (const Complex& x) { Complex retval; double r = x.real (), i = x.imag (); if (fabs (r) < 0.5 && fabs (i) < 0.5) { double u = 2*r + r*r + i*i; retval = Complex (log1p (u / (1+sqrt (u+1))), atan2 (1 + r, i)); } else retval = std::log (Complex (1) + x); return retval; } #if !defined (HAVE_CBRT) double cbrt (double x) { static const double one_third = 0.3333333333333333333; if (xfinite (x)) { // Use pow. double y = std::pow (std::abs (x), one_third) * signum (x); // Correct for better accuracy. return (x / (y*y) + y + y) / 3; } else return x; } #endif #if !defined (HAVE_LOG1PF) float log1pf (float x) { float retval; float ax = fabs (x); if (ax < 0.2) { // use approximation log (1+x) ~ 2*sum ((x/(2+x)).^ii ./ ii), ii = 1:2:2n+1 float u = x / (2 + x), t = 1, s = 0; for (int i = 2; i < 12; i += 2) s += (t *= u*u) / (i+1); retval = 2 * (s + 1) * u; } else retval = log (1 + x); return retval; } #endif FloatComplex log1p (const FloatComplex& x) { FloatComplex retval; float r = x.real (), i = x.imag (); if (fabs (r) < 0.5 && fabs (i) < 0.5) { float u = 2*r + r*r + i*i; retval = FloatComplex (log1p (u / (1+sqrt (u+1))), atan2 (1 + r, i)); } else retval = std::log (FloatComplex (1) + x); return retval; } #if !defined (HAVE_CBRTF) float cbrtf (float x) { static const float one_third = 0.3333333333333333333f; if (xfinite (x)) { // Use pow. float y = std::pow (std::abs (x), one_third) * signum (x); // Correct for better accuracy. return (x / (y*y) + y + y) / 3; } else return x; } #endif static inline Complex zbesj (const Complex& z, double alpha, int kode, octave_idx_type& ierr); static inline Complex zbesy (const Complex& z, double alpha, int kode, octave_idx_type& ierr); static inline Complex zbesi (const Complex& z, double alpha, int kode, octave_idx_type& ierr); static inline Complex zbesk (const Complex& z, double alpha, int kode, octave_idx_type& ierr); static inline Complex zbesh1 (const Complex& z, double alpha, int kode, octave_idx_type& ierr); static inline Complex zbesh2 (const Complex& z, double alpha, int kode, octave_idx_type& ierr); static inline Complex bessel_return_value (const Complex& val, octave_idx_type ierr) { static const Complex inf_val = Complex (octave_Inf, octave_Inf); static const Complex nan_val = Complex (octave_NaN, octave_NaN); Complex retval; switch (ierr) { case 0: case 3: retval = val; break; case 2: retval = inf_val; break; default: retval = nan_val; break; } return retval; } static inline bool is_integer_value (double x) { return x == static_cast<double> (static_cast<long> (x)); } static inline Complex zbesj (const Complex& z, double alpha, int kode, octave_idx_type& ierr) { Complex retval; if (alpha >= 0.0) { double yr = 0.0; double yi = 0.0; octave_idx_type nz; double zr = z.real (); double zi = z.imag (); F77_FUNC (zbesj, ZBESJ) (zr, zi, alpha, 2, 1, &yr, &yi, nz, ierr); if (kode != 2) { double expz = exp (std::abs (zi)); yr *= expz; yi *= expz; } if (zi == 0.0 && zr >= 0.0) yi = 0.0; retval = bessel_return_value (Complex (yr, yi), ierr); } else if (is_integer_value (alpha)) { // zbesy can overflow as z->0, and cause troubles for generic case below alpha = -alpha; Complex tmp = zbesj (z, alpha, kode, ierr); if ((static_cast <long> (alpha)) & 1) tmp = - tmp; retval = bessel_return_value (tmp, ierr); } else { alpha = -alpha; Complex tmp = cos (M_PI * alpha) * zbesj (z, alpha, kode, ierr); if (ierr == 0 || ierr == 3) { tmp -= sin (M_PI * alpha) * zbesy (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } else retval = Complex (octave_NaN, octave_NaN); } return retval; } static inline Complex zbesy (const Complex& z, double alpha, int kode, octave_idx_type& ierr) { Complex retval; if (alpha >= 0.0) { double yr = 0.0; double yi = 0.0; octave_idx_type nz; double wr, wi; double zr = z.real (); double zi = z.imag (); ierr = 0; if (zr == 0.0 && zi == 0.0) { yr = -octave_Inf; yi = 0.0; } else { F77_FUNC (zbesy, ZBESY) (zr, zi, alpha, 2, 1, &yr, &yi, nz, &wr, &wi, ierr); if (kode != 2) { double expz = exp (std::abs (zi)); yr *= expz; yi *= expz; } if (zi == 0.0 && zr >= 0.0) yi = 0.0; } return bessel_return_value (Complex (yr, yi), ierr); } else if (is_integer_value (alpha - 0.5)) { // zbesy can overflow as z->0, and cause troubles for generic case below alpha = -alpha; Complex tmp = zbesj (z, alpha, kode, ierr); if ((static_cast <long> (alpha - 0.5)) & 1) tmp = - tmp; retval = bessel_return_value (tmp, ierr); } else { alpha = -alpha; Complex tmp = cos (M_PI * alpha) * zbesy (z, alpha, kode, ierr); if (ierr == 0 || ierr == 3) { tmp += sin (M_PI * alpha) * zbesj (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } else retval = Complex (octave_NaN, octave_NaN); } return retval; } static inline Complex zbesi (const Complex& z, double alpha, int kode, octave_idx_type& ierr) { Complex retval; if (alpha >= 0.0) { double yr = 0.0; double yi = 0.0; octave_idx_type nz; double zr = z.real (); double zi = z.imag (); F77_FUNC (zbesi, ZBESI) (zr, zi, alpha, 2, 1, &yr, &yi, nz, ierr); if (kode != 2) { double expz = exp (std::abs (zr)); yr *= expz; yi *= expz; } if (zi == 0.0 && zr >= 0.0) yi = 0.0; retval = bessel_return_value (Complex (yr, yi), ierr); } else if (is_integer_value (alpha)) { // zbesi can overflow as z->0, and cause troubles for generic case below alpha = -alpha; Complex tmp = zbesi (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } else { alpha = -alpha; Complex tmp = zbesi (z, alpha, kode, ierr); if (ierr == 0 || ierr == 3) { Complex tmp2 = (2.0 / M_PI) * sin (M_PI * alpha) * zbesk (z, alpha, kode, ierr); if (kode == 2) { // Compensate for different scaling factor of besk. tmp2 *= exp (-z - std::abs (z.real ())); } tmp += tmp2; retval = bessel_return_value (tmp, ierr); } else retval = Complex (octave_NaN, octave_NaN); } return retval; } static inline Complex zbesk (const Complex& z, double alpha, int kode, octave_idx_type& ierr) { Complex retval; if (alpha >= 0.0) { double yr = 0.0; double yi = 0.0; octave_idx_type nz; double zr = z.real (); double zi = z.imag (); ierr = 0; if (zr == 0.0 && zi == 0.0) { yr = octave_Inf; yi = 0.0; } else { F77_FUNC (zbesk, ZBESK) (zr, zi, alpha, 2, 1, &yr, &yi, nz, ierr); if (kode != 2) { Complex expz = exp (-z); double rexpz = real (expz); double iexpz = imag (expz); double tmp = yr*rexpz - yi*iexpz; yi = yr*iexpz + yi*rexpz; yr = tmp; } if (zi == 0.0 && zr >= 0.0) yi = 0.0; } retval = bessel_return_value (Complex (yr, yi), ierr); } else { Complex tmp = zbesk (z, -alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } return retval; } static inline Complex zbesh1 (const Complex& z, double alpha, int kode, octave_idx_type& ierr) { Complex retval; if (alpha >= 0.0) { double yr = 0.0; double yi = 0.0; octave_idx_type nz; double zr = z.real (); double zi = z.imag (); F77_FUNC (zbesh, ZBESH) (zr, zi, alpha, 2, 1, 1, &yr, &yi, nz, ierr); if (kode != 2) { Complex expz = exp (Complex (0.0, 1.0) * z); double rexpz = real (expz); double iexpz = imag (expz); double tmp = yr*rexpz - yi*iexpz; yi = yr*iexpz + yi*rexpz; yr = tmp; } retval = bessel_return_value (Complex (yr, yi), ierr); } else { alpha = -alpha; static const Complex eye = Complex (0.0, 1.0); Complex tmp = exp (M_PI * alpha * eye) * zbesh1 (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } return retval; } static inline Complex zbesh2 (const Complex& z, double alpha, int kode, octave_idx_type& ierr) { Complex retval; if (alpha >= 0.0) { double yr = 0.0; double yi = 0.0; octave_idx_type nz; double zr = z.real (); double zi = z.imag (); F77_FUNC (zbesh, ZBESH) (zr, zi, alpha, 2, 2, 1, &yr, &yi, nz, ierr); if (kode != 2) { Complex expz = exp (-Complex (0.0, 1.0) * z); double rexpz = real (expz); double iexpz = imag (expz); double tmp = yr*rexpz - yi*iexpz; yi = yr*iexpz + yi*rexpz; yr = tmp; } retval = bessel_return_value (Complex (yr, yi), ierr); } else { alpha = -alpha; static const Complex eye = Complex (0.0, 1.0); Complex tmp = exp (-M_PI * alpha * eye) * zbesh2 (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } return retval; } typedef Complex (*dptr) (const Complex&, double, int, octave_idx_type&); static inline Complex do_bessel (dptr f, const char *, double alpha, const Complex& x, bool scaled, octave_idx_type& ierr) { Complex retval; retval = f (x, alpha, (scaled ? 2 : 1), ierr); return retval; } static inline ComplexMatrix do_bessel (dptr f, const char *, double alpha, const ComplexMatrix& x, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = x.rows (); octave_idx_type nc = x.cols (); ComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x(i,j), alpha, (scaled ? 2 : 1), ierr(i,j)); return retval; } static inline ComplexMatrix do_bessel (dptr f, const char *, const Matrix& alpha, const Complex& x, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = alpha.rows (); octave_idx_type nc = alpha.cols (); ComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x, alpha(i,j), (scaled ? 2 : 1), ierr(i,j)); return retval; } static inline ComplexMatrix do_bessel (dptr f, const char *fn, const Matrix& alpha, const ComplexMatrix& x, bool scaled, Array<octave_idx_type>& ierr) { ComplexMatrix retval; octave_idx_type x_nr = x.rows (); octave_idx_type x_nc = x.cols (); octave_idx_type alpha_nr = alpha.rows (); octave_idx_type alpha_nc = alpha.cols (); if (x_nr == alpha_nr && x_nc == alpha_nc) { octave_idx_type nr = x_nr; octave_idx_type nc = x_nc; retval.resize (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x(i,j), alpha(i,j), (scaled ? 2 : 1), ierr(i,j)); } else (*current_liboctave_error_handler) ("%s: the sizes of alpha and x must conform", fn); return retval; } static inline ComplexNDArray do_bessel (dptr f, const char *, double alpha, const ComplexNDArray& x, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); ComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = f (x(i), alpha, (scaled ? 2 : 1), ierr(i)); return retval; } static inline ComplexNDArray do_bessel (dptr f, const char *, const NDArray& alpha, const Complex& x, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = alpha.dims (); octave_idx_type nel = dv.numel (); ComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = f (x, alpha(i), (scaled ? 2 : 1), ierr(i)); return retval; } static inline ComplexNDArray do_bessel (dptr f, const char *fn, const NDArray& alpha, const ComplexNDArray& x, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = x.dims (); ComplexNDArray retval; if (dv == alpha.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = f (x(i), alpha(i), (scaled ? 2 : 1), ierr(i)); } else (*current_liboctave_error_handler) ("%s: the sizes of alpha and x must conform", fn); return retval; } static inline ComplexMatrix do_bessel (dptr f, const char *, const RowVector& alpha, const ComplexColumnVector& x, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = x.length (); octave_idx_type nc = alpha.length (); ComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x(i), alpha(j), (scaled ? 2 : 1), ierr(i,j)); return retval; } #define SS_BESSEL(name, fcn) \ Complex \ name (double alpha, const Complex& x, bool scaled, octave_idx_type& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define SM_BESSEL(name, fcn) \ ComplexMatrix \ name (double alpha, const ComplexMatrix& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define MS_BESSEL(name, fcn) \ ComplexMatrix \ name (const Matrix& alpha, const Complex& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define MM_BESSEL(name, fcn) \ ComplexMatrix \ name (const Matrix& alpha, const ComplexMatrix& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define SN_BESSEL(name, fcn) \ ComplexNDArray \ name (double alpha, const ComplexNDArray& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define NS_BESSEL(name, fcn) \ ComplexNDArray \ name (const NDArray& alpha, const Complex& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define NN_BESSEL(name, fcn) \ ComplexNDArray \ name (const NDArray& alpha, const ComplexNDArray& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define RC_BESSEL(name, fcn) \ ComplexMatrix \ name (const RowVector& alpha, const ComplexColumnVector& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define ALL_BESSEL(name, fcn) \ SS_BESSEL (name, fcn) \ SM_BESSEL (name, fcn) \ MS_BESSEL (name, fcn) \ MM_BESSEL (name, fcn) \ SN_BESSEL (name, fcn) \ NS_BESSEL (name, fcn) \ NN_BESSEL (name, fcn) \ RC_BESSEL (name, fcn) ALL_BESSEL (besselj, zbesj) ALL_BESSEL (bessely, zbesy) ALL_BESSEL (besseli, zbesi) ALL_BESSEL (besselk, zbesk) ALL_BESSEL (besselh1, zbesh1) ALL_BESSEL (besselh2, zbesh2) #undef ALL_BESSEL #undef SS_BESSEL #undef SM_BESSEL #undef MS_BESSEL #undef MM_BESSEL #undef SN_BESSEL #undef NS_BESSEL #undef NN_BESSEL #undef RC_BESSEL static inline FloatComplex cbesj (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr); static inline FloatComplex cbesy (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr); static inline FloatComplex cbesi (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr); static inline FloatComplex cbesk (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr); static inline FloatComplex cbesh1 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr); static inline FloatComplex cbesh2 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr); static inline FloatComplex bessel_return_value (const FloatComplex& val, octave_idx_type ierr) { static const FloatComplex inf_val = FloatComplex (octave_Float_Inf, octave_Float_Inf); static const FloatComplex nan_val = FloatComplex (octave_Float_NaN, octave_Float_NaN); FloatComplex retval; switch (ierr) { case 0: case 3: retval = val; break; case 2: retval = inf_val; break; default: retval = nan_val; break; } return retval; } static inline bool is_integer_value (float x) { return x == static_cast<float> (static_cast<long> (x)); } static inline FloatComplex cbesj (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr) { FloatComplex retval; if (alpha >= 0.0) { FloatComplex y = 0.0; octave_idx_type nz; F77_FUNC (cbesj, CBESJ) (z, alpha, 2, 1, &y, nz, ierr); if (kode != 2) { float expz = exp (std::abs (imag (z))); y *= expz; } if (imag (z) == 0.0 && real (z) >= 0.0) y = FloatComplex (y.real (), 0.0); retval = bessel_return_value (y, ierr); } else if (is_integer_value (alpha)) { // zbesy can overflow as z->0, and cause troubles for generic case below alpha = -alpha; FloatComplex tmp = cbesj (z, alpha, kode, ierr); if ((static_cast <long> (alpha)) & 1) tmp = - tmp; retval = bessel_return_value (tmp, ierr); } else { alpha = -alpha; FloatComplex tmp = cosf (static_cast<float> (M_PI) * alpha) * cbesj (z, alpha, kode, ierr); if (ierr == 0 || ierr == 3) { tmp -= sinf (static_cast<float> (M_PI) * alpha) * cbesy (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } else retval = FloatComplex (octave_Float_NaN, octave_Float_NaN); } return retval; } static inline FloatComplex cbesy (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr) { FloatComplex retval; if (alpha >= 0.0) { FloatComplex y = 0.0; octave_idx_type nz; FloatComplex w; ierr = 0; if (real (z) == 0.0 && imag (z) == 0.0) { y = FloatComplex (-octave_Float_Inf, 0.0); } else { F77_FUNC (cbesy, CBESY) (z, alpha, 2, 1, &y, nz, &w, ierr); if (kode != 2) { float expz = exp (std::abs (imag (z))); y *= expz; } if (imag (z) == 0.0 && real (z) >= 0.0) y = FloatComplex (y.real (), 0.0); } return bessel_return_value (y, ierr); } else if (is_integer_value (alpha - 0.5)) { // zbesy can overflow as z->0, and cause troubles for generic case below alpha = -alpha; FloatComplex tmp = cbesj (z, alpha, kode, ierr); if ((static_cast <long> (alpha - 0.5)) & 1) tmp = - tmp; retval = bessel_return_value (tmp, ierr); } else { alpha = -alpha; FloatComplex tmp = cosf (static_cast<float> (M_PI) * alpha) * cbesy (z, alpha, kode, ierr); if (ierr == 0 || ierr == 3) { tmp += sinf (static_cast<float> (M_PI) * alpha) * cbesj (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } else retval = FloatComplex (octave_Float_NaN, octave_Float_NaN); } return retval; } static inline FloatComplex cbesi (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr) { FloatComplex retval; if (alpha >= 0.0) { FloatComplex y = 0.0; octave_idx_type nz; F77_FUNC (cbesi, CBESI) (z, alpha, 2, 1, &y, nz, ierr); if (kode != 2) { float expz = exp (std::abs (real (z))); y *= expz; } if (imag (z) == 0.0 && real (z) >= 0.0) y = FloatComplex (y.real (), 0.0); retval = bessel_return_value (y, ierr); } else { alpha = -alpha; FloatComplex tmp = cbesi (z, alpha, kode, ierr); if (ierr == 0 || ierr == 3) { FloatComplex tmp2 = static_cast<float> (2.0 / M_PI) * sinf (static_cast<float> (M_PI) * alpha) * cbesk (z, alpha, kode, ierr); if (kode == 2) { // Compensate for different scaling factor of besk. tmp2 *= exp (-z - std::abs (z.real ())); } tmp += tmp2; retval = bessel_return_value (tmp, ierr); } else retval = FloatComplex (octave_Float_NaN, octave_Float_NaN); } return retval; } static inline FloatComplex cbesk (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr) { FloatComplex retval; if (alpha >= 0.0) { FloatComplex y = 0.0; octave_idx_type nz; ierr = 0; if (real (z) == 0.0 && imag (z) == 0.0) { y = FloatComplex (octave_Float_Inf, 0.0); } else { F77_FUNC (cbesk, CBESK) (z, alpha, 2, 1, &y, nz, ierr); if (kode != 2) { FloatComplex expz = exp (-z); float rexpz = real (expz); float iexpz = imag (expz); float tmp_r = real (y) * rexpz - imag (y) * iexpz; float tmp_i = real (y) * iexpz + imag (y) * rexpz; y = FloatComplex (tmp_r, tmp_i); } if (imag (z) == 0.0 && real (z) >= 0.0) y = FloatComplex (y.real (), 0.0); } retval = bessel_return_value (y, ierr); } else { FloatComplex tmp = cbesk (z, -alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } return retval; } static inline FloatComplex cbesh1 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr) { FloatComplex retval; if (alpha >= 0.0) { FloatComplex y = 0.0; octave_idx_type nz; F77_FUNC (cbesh, CBESH) (z, alpha, 2, 1, 1, &y, nz, ierr); if (kode != 2) { FloatComplex expz = exp (FloatComplex (0.0, 1.0) * z); float rexpz = real (expz); float iexpz = imag (expz); float tmp_r = real (y) * rexpz - imag (y) * iexpz; float tmp_i = real (y) * iexpz + imag (y) * rexpz; y = FloatComplex (tmp_r, tmp_i); } retval = bessel_return_value (y, ierr); } else { alpha = -alpha; static const FloatComplex eye = FloatComplex (0.0, 1.0); FloatComplex tmp = exp (static_cast<float> (M_PI) * alpha * eye) * cbesh1 (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } return retval; } static inline FloatComplex cbesh2 (const FloatComplex& z, float alpha, int kode, octave_idx_type& ierr) { FloatComplex retval; if (alpha >= 0.0) { FloatComplex y = 0.0; octave_idx_type nz; F77_FUNC (cbesh, CBESH) (z, alpha, 2, 2, 1, &y, nz, ierr); if (kode != 2) { FloatComplex expz = exp (-FloatComplex (0.0, 1.0) * z); float rexpz = real (expz); float iexpz = imag (expz); float tmp_r = real (y) * rexpz - imag (y) * iexpz; float tmp_i = real (y) * iexpz + imag (y) * rexpz; y = FloatComplex (tmp_r, tmp_i); } retval = bessel_return_value (y, ierr); } else { alpha = -alpha; static const FloatComplex eye = FloatComplex (0.0, 1.0); FloatComplex tmp = exp (-static_cast<float> (M_PI) * alpha * eye) * cbesh2 (z, alpha, kode, ierr); retval = bessel_return_value (tmp, ierr); } return retval; } typedef FloatComplex (*fptr) (const FloatComplex&, float, int, octave_idx_type&); static inline FloatComplex do_bessel (fptr f, const char *, float alpha, const FloatComplex& x, bool scaled, octave_idx_type& ierr) { FloatComplex retval; retval = f (x, alpha, (scaled ? 2 : 1), ierr); return retval; } static inline FloatComplexMatrix do_bessel (fptr f, const char *, float alpha, const FloatComplexMatrix& x, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = x.rows (); octave_idx_type nc = x.cols (); FloatComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x(i,j), alpha, (scaled ? 2 : 1), ierr(i,j)); return retval; } static inline FloatComplexMatrix do_bessel (fptr f, const char *, const FloatMatrix& alpha, const FloatComplex& x, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = alpha.rows (); octave_idx_type nc = alpha.cols (); FloatComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x, alpha(i,j), (scaled ? 2 : 1), ierr(i,j)); return retval; } static inline FloatComplexMatrix do_bessel (fptr f, const char *fn, const FloatMatrix& alpha, const FloatComplexMatrix& x, bool scaled, Array<octave_idx_type>& ierr) { FloatComplexMatrix retval; octave_idx_type x_nr = x.rows (); octave_idx_type x_nc = x.cols (); octave_idx_type alpha_nr = alpha.rows (); octave_idx_type alpha_nc = alpha.cols (); if (x_nr == alpha_nr && x_nc == alpha_nc) { octave_idx_type nr = x_nr; octave_idx_type nc = x_nc; retval.resize (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x(i,j), alpha(i,j), (scaled ? 2 : 1), ierr(i,j)); } else (*current_liboctave_error_handler) ("%s: the sizes of alpha and x must conform", fn); return retval; } static inline FloatComplexNDArray do_bessel (fptr f, const char *, float alpha, const FloatComplexNDArray& x, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); FloatComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = f (x(i), alpha, (scaled ? 2 : 1), ierr(i)); return retval; } static inline FloatComplexNDArray do_bessel (fptr f, const char *, const FloatNDArray& alpha, const FloatComplex& x, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = alpha.dims (); octave_idx_type nel = dv.numel (); FloatComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = f (x, alpha(i), (scaled ? 2 : 1), ierr(i)); return retval; } static inline FloatComplexNDArray do_bessel (fptr f, const char *fn, const FloatNDArray& alpha, const FloatComplexNDArray& x, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = x.dims (); FloatComplexNDArray retval; if (dv == alpha.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = f (x(i), alpha(i), (scaled ? 2 : 1), ierr(i)); } else (*current_liboctave_error_handler) ("%s: the sizes of alpha and x must conform", fn); return retval; } static inline FloatComplexMatrix do_bessel (fptr f, const char *, const FloatRowVector& alpha, const FloatComplexColumnVector& x, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = x.length (); octave_idx_type nc = alpha.length (); FloatComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = f (x(i), alpha(j), (scaled ? 2 : 1), ierr(i,j)); return retval; } #define SS_BESSEL(name, fcn) \ FloatComplex \ name (float alpha, const FloatComplex& x, bool scaled, octave_idx_type& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define SM_BESSEL(name, fcn) \ FloatComplexMatrix \ name (float alpha, const FloatComplexMatrix& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define MS_BESSEL(name, fcn) \ FloatComplexMatrix \ name (const FloatMatrix& alpha, const FloatComplex& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define MM_BESSEL(name, fcn) \ FloatComplexMatrix \ name (const FloatMatrix& alpha, const FloatComplexMatrix& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define SN_BESSEL(name, fcn) \ FloatComplexNDArray \ name (float alpha, const FloatComplexNDArray& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define NS_BESSEL(name, fcn) \ FloatComplexNDArray \ name (const FloatNDArray& alpha, const FloatComplex& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define NN_BESSEL(name, fcn) \ FloatComplexNDArray \ name (const FloatNDArray& alpha, const FloatComplexNDArray& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define RC_BESSEL(name, fcn) \ FloatComplexMatrix \ name (const FloatRowVector& alpha, const FloatComplexColumnVector& x, bool scaled, \ Array<octave_idx_type>& ierr) \ { \ return do_bessel (fcn, #name, alpha, x, scaled, ierr); \ } #define ALL_BESSEL(name, fcn) \ SS_BESSEL (name, fcn) \ SM_BESSEL (name, fcn) \ MS_BESSEL (name, fcn) \ MM_BESSEL (name, fcn) \ SN_BESSEL (name, fcn) \ NS_BESSEL (name, fcn) \ NN_BESSEL (name, fcn) \ RC_BESSEL (name, fcn) ALL_BESSEL (besselj, cbesj) ALL_BESSEL (bessely, cbesy) ALL_BESSEL (besseli, cbesi) ALL_BESSEL (besselk, cbesk) ALL_BESSEL (besselh1, cbesh1) ALL_BESSEL (besselh2, cbesh2) #undef ALL_BESSEL #undef SS_BESSEL #undef SM_BESSEL #undef MS_BESSEL #undef MM_BESSEL #undef SN_BESSEL #undef NS_BESSEL #undef NN_BESSEL #undef RC_BESSEL Complex airy (const Complex& z, bool deriv, bool scaled, octave_idx_type& ierr) { double ar = 0.0; double ai = 0.0; octave_idx_type nz; double zr = z.real (); double zi = z.imag (); octave_idx_type id = deriv ? 1 : 0; F77_FUNC (zairy, ZAIRY) (zr, zi, id, 2, ar, ai, nz, ierr); if (! scaled) { Complex expz = exp (- 2.0 / 3.0 * z * sqrt (z)); double rexpz = real (expz); double iexpz = imag (expz); double tmp = ar*rexpz - ai*iexpz; ai = ar*iexpz + ai*rexpz; ar = tmp; } if (zi == 0.0 && (! scaled || zr >= 0.0)) ai = 0.0; return bessel_return_value (Complex (ar, ai), ierr); } Complex biry (const Complex& z, bool deriv, bool scaled, octave_idx_type& ierr) { double ar = 0.0; double ai = 0.0; double zr = z.real (); double zi = z.imag (); octave_idx_type id = deriv ? 1 : 0; F77_FUNC (zbiry, ZBIRY) (zr, zi, id, 2, ar, ai, ierr); if (! scaled) { Complex expz = exp (std::abs (real (2.0 / 3.0 * z * sqrt (z)))); double rexpz = real (expz); double iexpz = imag (expz); double tmp = ar*rexpz - ai*iexpz; ai = ar*iexpz + ai*rexpz; ar = tmp; } if (zi == 0.0 && (! scaled || zr >= 0.0)) ai = 0.0; return bessel_return_value (Complex (ar, ai), ierr); } ComplexMatrix airy (const ComplexMatrix& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = z.rows (); octave_idx_type nc = z.cols (); ComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = airy (z(i,j), deriv, scaled, ierr(i,j)); return retval; } ComplexMatrix biry (const ComplexMatrix& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = z.rows (); octave_idx_type nc = z.cols (); ComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = biry (z(i,j), deriv, scaled, ierr(i,j)); return retval; } ComplexNDArray airy (const ComplexNDArray& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = z.dims (); octave_idx_type nel = dv.numel (); ComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = airy (z(i), deriv, scaled, ierr(i)); return retval; } ComplexNDArray biry (const ComplexNDArray& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = z.dims (); octave_idx_type nel = dv.numel (); ComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = biry (z(i), deriv, scaled, ierr(i)); return retval; } FloatComplex airy (const FloatComplex& z, bool deriv, bool scaled, octave_idx_type& ierr) { float ar = 0.0; float ai = 0.0; octave_idx_type nz; float zr = z.real (); float zi = z.imag (); octave_idx_type id = deriv ? 1 : 0; F77_FUNC (cairy, CAIRY) (zr, zi, id, 2, ar, ai, nz, ierr); if (! scaled) { FloatComplex expz = exp (- static_cast<float> (2.0 / 3.0) * z * sqrt (z)); float rexpz = real (expz); float iexpz = imag (expz); float tmp = ar*rexpz - ai*iexpz; ai = ar*iexpz + ai*rexpz; ar = tmp; } if (zi == 0.0 && (! scaled || zr >= 0.0)) ai = 0.0; return bessel_return_value (FloatComplex (ar, ai), ierr); } FloatComplex biry (const FloatComplex& z, bool deriv, bool scaled, octave_idx_type& ierr) { float ar = 0.0; float ai = 0.0; float zr = z.real (); float zi = z.imag (); octave_idx_type id = deriv ? 1 : 0; F77_FUNC (cbiry, CBIRY) (zr, zi, id, 2, ar, ai, ierr); if (! scaled) { FloatComplex expz = exp (std::abs (real (static_cast<float> (2.0 / 3.0) * z * sqrt (z)))); float rexpz = real (expz); float iexpz = imag (expz); float tmp = ar*rexpz - ai*iexpz; ai = ar*iexpz + ai*rexpz; ar = tmp; } if (zi == 0.0 && (! scaled || zr >= 0.0)) ai = 0.0; return bessel_return_value (FloatComplex (ar, ai), ierr); } FloatComplexMatrix airy (const FloatComplexMatrix& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = z.rows (); octave_idx_type nc = z.cols (); FloatComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = airy (z(i,j), deriv, scaled, ierr(i,j)); return retval; } FloatComplexMatrix biry (const FloatComplexMatrix& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { octave_idx_type nr = z.rows (); octave_idx_type nc = z.cols (); FloatComplexMatrix retval (nr, nc); ierr.resize (dim_vector (nr, nc)); for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) retval(i,j) = biry (z(i,j), deriv, scaled, ierr(i,j)); return retval; } FloatComplexNDArray airy (const FloatComplexNDArray& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = z.dims (); octave_idx_type nel = dv.numel (); FloatComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = airy (z(i), deriv, scaled, ierr(i)); return retval; } FloatComplexNDArray biry (const FloatComplexNDArray& z, bool deriv, bool scaled, Array<octave_idx_type>& ierr) { dim_vector dv = z.dims (); octave_idx_type nel = dv.numel (); FloatComplexNDArray retval (dv); ierr.resize (dv); for (octave_idx_type i = 0; i < nel; i++) retval(i) = biry (z(i), deriv, scaled, ierr(i)); return retval; } static void gripe_betainc_nonconformant (const dim_vector& d1, const dim_vector& d2, const dim_vector& d3) { std::string d1_str = d1.str (); std::string d2_str = d2.str (); std::string d3_str = d3.str (); (*current_liboctave_error_handler) ("betainc: nonconformant arguments (x is %s, a is %s, b is %s)", d1_str.c_str (), d2_str.c_str (), d3_str.c_str ()); } static void gripe_betaincinv_nonconformant (const dim_vector& d1, const dim_vector& d2, const dim_vector& d3) { std::string d1_str = d1.str (); std::string d2_str = d2.str (); std::string d3_str = d3.str (); (*current_liboctave_error_handler) ("betaincinv: nonconformant arguments (x is %s, a is %s, b is %s)", d1_str.c_str (), d2_str.c_str (), d3_str.c_str ()); } double betainc (double x, double a, double b) { double retval; F77_XFCN (xdbetai, XDBETAI, (x, a, b, retval)); return retval; } Array<double> betainc (double x, double a, const Array<double>& b) { dim_vector dv = b.dims (); octave_idx_type nel = dv.numel (); Array<double> retval (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x, a, b(i)); return retval; } Array<double> betainc (double x, const Array<double>& a, double b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); Array<double> retval (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x, a(i), b); return retval; } Array<double> betainc (double x, const Array<double>& a, const Array<double>& b) { Array<double> retval; dim_vector dv = a.dims (); if (dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x, a(i), b(i)); } else gripe_betainc_nonconformant (dim_vector (0, 0), dv, b.dims ()); return retval; } Array<double> betainc (const Array<double>& x, double a, double b) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); Array<double> retval (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a, b); return retval; } Array<double> betainc (const Array<double>& x, double a, const Array<double>& b) { Array<double> retval; dim_vector dv = x.dims (); if (dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a, b(i)); } else gripe_betainc_nonconformant (dv, dim_vector (0, 0), b.dims ()); return retval; } Array<double> betainc (const Array<double>& x, const Array<double>& a, double b) { Array<double> retval; dim_vector dv = x.dims (); if (dv == a.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a(i), b); } else gripe_betainc_nonconformant (dv, a.dims (), dim_vector (0, 0)); return retval; } Array<double> betainc (const Array<double>& x, const Array<double>& a, const Array<double>& b) { Array<double> retval; dim_vector dv = x.dims (); if (dv == a.dims () && dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a(i), b(i)); } else gripe_betainc_nonconformant (dv, a.dims (), b.dims ()); return retval; } float betainc (float x, float a, float b) { float retval; F77_XFCN (xbetai, XBETAI, (x, a, b, retval)); return retval; } Array<float> betainc (float x, float a, const Array<float>& b) { dim_vector dv = b.dims (); octave_idx_type nel = dv.numel (); Array<float> retval (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x, a, b(i)); return retval; } Array<float> betainc (float x, const Array<float>& a, float b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); Array<float> retval (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x, a(i), b); return retval; } Array<float> betainc (float x, const Array<float>& a, const Array<float>& b) { Array<float> retval; dim_vector dv = a.dims (); if (dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x, a(i), b(i)); } else gripe_betainc_nonconformant (dim_vector (0, 0), dv, b.dims ()); return retval; } Array<float> betainc (const Array<float>& x, float a, float b) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); Array<float> retval (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a, b); return retval; } Array<float> betainc (const Array<float>& x, float a, const Array<float>& b) { Array<float> retval; dim_vector dv = x.dims (); if (dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a, b(i)); } else gripe_betainc_nonconformant (dv, dim_vector (0, 0), b.dims ()); return retval; } Array<float> betainc (const Array<float>& x, const Array<float>& a, float b) { Array<float> retval; dim_vector dv = x.dims (); if (dv == a.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a(i), b); } else gripe_betainc_nonconformant (dv, a.dims (), dim_vector (0, 0)); return retval; } Array<float> betainc (const Array<float>& x, const Array<float>& a, const Array<float>& b) { Array<float> retval; dim_vector dv = x.dims (); if (dv == a.dims () && dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); float *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betainc (x(i), a(i), b(i)); } else gripe_betainc_nonconformant (dv, a.dims (), b.dims ()); return retval; } // FIXME -- there is still room for improvement here... double gammainc (double x, double a, bool& err) { double retval; err = false; if (a < 0.0 || x < 0.0) { (*current_liboctave_error_handler) ("gammainc: A and X must be non-negative"); err = true; } else F77_XFCN (xgammainc, XGAMMAINC, (a, x, retval)); return retval; } Matrix gammainc (double x, const Matrix& a) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); Matrix result (nr, nc); Matrix retval; bool err; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { result(i,j) = gammainc (x, a(i,j), err); if (err) goto done; } retval = result; done: return retval; } Matrix gammainc (const Matrix& x, double a) { octave_idx_type nr = x.rows (); octave_idx_type nc = x.cols (); Matrix result (nr, nc); Matrix retval; bool err; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { result(i,j) = gammainc (x(i,j), a, err); if (err) goto done; } retval = result; done: return retval; } Matrix gammainc (const Matrix& x, const Matrix& a) { Matrix result; Matrix retval; octave_idx_type nr = x.rows (); octave_idx_type nc = x.cols (); octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (nr == a_nr && nc == a_nc) { result.resize (nr, nc); bool err; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { result(i,j) = gammainc (x(i,j), a(i,j), err); if (err) goto done; } retval = result; } else (*current_liboctave_error_handler) ("gammainc: nonconformant arguments (arg 1 is %dx%d, arg 2 is %dx%d)", nr, nc, a_nr, a_nc); done: return retval; } NDArray gammainc (double x, const NDArray& a) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); NDArray retval; NDArray result (dv); bool err; for (octave_idx_type i = 0; i < nel; i++) { result (i) = gammainc (x, a(i), err); if (err) goto done; } retval = result; done: return retval; } NDArray gammainc (const NDArray& x, double a) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); NDArray retval; NDArray result (dv); bool err; for (octave_idx_type i = 0; i < nel; i++) { result (i) = gammainc (x(i), a, err); if (err) goto done; } retval = result; done: return retval; } NDArray gammainc (const NDArray& x, const NDArray& a) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); NDArray retval; NDArray result; if (dv == a.dims ()) { result.resize (dv); bool err; for (octave_idx_type i = 0; i < nel; i++) { result (i) = gammainc (x(i), a(i), err); if (err) goto done; } retval = result; } else { std::string x_str = dv.str (); std::string a_str = a.dims ().str (); (*current_liboctave_error_handler) ("gammainc: nonconformant arguments (arg 1 is %s, arg 2 is %s)", x_str.c_str (), a_str. c_str ()); } done: return retval; } float gammainc (float x, float a, bool& err) { float retval; err = false; if (a < 0.0 || x < 0.0) { (*current_liboctave_error_handler) ("gammainc: A and X must be non-negative"); err = true; } else F77_XFCN (xsgammainc, XSGAMMAINC, (a, x, retval)); return retval; } FloatMatrix gammainc (float x, const FloatMatrix& a) { octave_idx_type nr = a.rows (); octave_idx_type nc = a.cols (); FloatMatrix result (nr, nc); FloatMatrix retval; bool err; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { result(i,j) = gammainc (x, a(i,j), err); if (err) goto done; } retval = result; done: return retval; } FloatMatrix gammainc (const FloatMatrix& x, float a) { octave_idx_type nr = x.rows (); octave_idx_type nc = x.cols (); FloatMatrix result (nr, nc); FloatMatrix retval; bool err; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { result(i,j) = gammainc (x(i,j), a, err); if (err) goto done; } retval = result; done: return retval; } FloatMatrix gammainc (const FloatMatrix& x, const FloatMatrix& a) { FloatMatrix result; FloatMatrix retval; octave_idx_type nr = x.rows (); octave_idx_type nc = x.cols (); octave_idx_type a_nr = a.rows (); octave_idx_type a_nc = a.cols (); if (nr == a_nr && nc == a_nc) { result.resize (nr, nc); bool err; for (octave_idx_type j = 0; j < nc; j++) for (octave_idx_type i = 0; i < nr; i++) { result(i,j) = gammainc (x(i,j), a(i,j), err); if (err) goto done; } retval = result; } else (*current_liboctave_error_handler) ("gammainc: nonconformant arguments (arg 1 is %dx%d, arg 2 is %dx%d)", nr, nc, a_nr, a_nc); done: return retval; } FloatNDArray gammainc (float x, const FloatNDArray& a) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); FloatNDArray retval; FloatNDArray result (dv); bool err; for (octave_idx_type i = 0; i < nel; i++) { result (i) = gammainc (x, a(i), err); if (err) goto done; } retval = result; done: return retval; } FloatNDArray gammainc (const FloatNDArray& x, float a) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); FloatNDArray retval; FloatNDArray result (dv); bool err; for (octave_idx_type i = 0; i < nel; i++) { result (i) = gammainc (x(i), a, err); if (err) goto done; } retval = result; done: return retval; } FloatNDArray gammainc (const FloatNDArray& x, const FloatNDArray& a) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); FloatNDArray retval; FloatNDArray result; if (dv == a.dims ()) { result.resize (dv); bool err; for (octave_idx_type i = 0; i < nel; i++) { result (i) = gammainc (x(i), a(i), err); if (err) goto done; } retval = result; } else { std::string x_str = dv.str (); std::string a_str = a.dims ().str (); (*current_liboctave_error_handler) ("gammainc: nonconformant arguments (arg 1 is %s, arg 2 is %s)", x_str.c_str (), a_str.c_str ()); } done: return retval; } Complex rc_log1p (double x) { const double pi = 3.14159265358979323846; return x < -1.0 ? Complex (log (-(1.0 + x)), pi) : Complex (log1p (x)); } FloatComplex rc_log1p (float x) { const float pi = 3.14159265358979323846f; return x < -1.0f ? FloatComplex (logf (-(1.0f + x)), pi) : FloatComplex (log1pf (x)); } // This algorithm is due to P. J. Acklam. // See http://home.online.no/~pjacklam/notes/invnorm/ // The rational approximation has relative accuracy 1.15e-9 in the whole region. // For doubles, it is refined by a single step of Halley's 3rd order method. // For single precision, the accuracy is already OK, so we skip it to get // faster evaluation. static double do_erfinv (double x, bool refine) { // Coefficients of rational approximation. static const double a[] = { -2.806989788730439e+01, 1.562324844726888e+02, -1.951109208597547e+02, 9.783370457507161e+01, -2.168328665628878e+01, 1.772453852905383e+00 }; static const double b[] = { -5.447609879822406e+01, 1.615858368580409e+02, -1.556989798598866e+02, 6.680131188771972e+01, -1.328068155288572e+01 }; static const double c[] = { -5.504751339936943e-03, -2.279687217114118e-01, -1.697592457770869e+00, -1.802933168781950e+00, 3.093354679843505e+00, 2.077595676404383e+00 }; static const double d[] = { 7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996e+00, 3.754408661907416e+00 }; static const double spi2 = 8.862269254527579e-01; // sqrt(pi)/2. static const double pbreak = 0.95150; double ax = fabs (x), y; // Select case. if (ax <= pbreak) { // Middle region. const double q = 0.5 * x, r = q*q; const double yn = (((((a[0]*r + a[1])*r + a[2])*r + a[3])*r + a[4])*r + a[5])*q; const double yd = ((((b[0]*r + b[1])*r + b[2])*r + b[3])*r + b[4])*r + 1.0; y = yn / yd; } else if (ax < 1.0) { // Tail region. const double q = sqrt (-2*log (0.5*(1-ax))); const double yn = ((((c[0]*q + c[1])*q + c[2])*q + c[3])*q + c[4])*q + c[5]; const double yd = (((d[0]*q + d[1])*q + d[2])*q + d[3])*q + 1.0; y = yn / yd * signum (-x); } else if (ax == 1.0) return octave_Inf * signum (x); else return octave_NaN; if (refine) { // One iteration of Halley's method gives full precision. double u = (erf (y) - x) * spi2 * exp (y*y); y -= u / (1 + y*u); } return y; } double erfinv (double x) { return do_erfinv (x, true); } float erfinv (float x) { return do_erfinv (x, false); } // The algorthim for erfcinv is an adaptation of the erfinv algorithm above // from P. J. Acklam. It has been modified to run over the different input // domain of erfcinv. See the notes for erfinv for an explanation. static double do_erfcinv (double x, bool refine) { // Coefficients of rational approximation. static const double a[] = { -2.806989788730439e+01, 1.562324844726888e+02, -1.951109208597547e+02, 9.783370457507161e+01, -2.168328665628878e+01, 1.772453852905383e+00 }; static const double b[] = { -5.447609879822406e+01, 1.615858368580409e+02, -1.556989798598866e+02, 6.680131188771972e+01, -1.328068155288572e+01 }; static const double c[] = { -5.504751339936943e-03, -2.279687217114118e-01, -1.697592457770869e+00, -1.802933168781950e+00, 3.093354679843505e+00, 2.077595676404383e+00 }; static const double d[] = { 7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996e+00, 3.754408661907416e+00 }; static const double spi2 = 8.862269254527579e-01; // sqrt(pi)/2. static const double pbreak_lo = 0.04850; // 1-pbreak static const double pbreak_hi = 1.95150; // 1+pbreak double y; // Select case. if (x >= pbreak_lo && x <= pbreak_hi) { // Middle region. const double q = 0.5*(1-x), r = q*q; const double yn = (((((a[0]*r + a[1])*r + a[2])*r + a[3])*r + a[4])*r + a[5])*q; const double yd = ((((b[0]*r + b[1])*r + b[2])*r + b[3])*r + b[4])*r + 1.0; y = yn / yd; } else if (x > 0.0 && x < 2.0) { // Tail region. const double q = x < 1 ? sqrt (-2*log (0.5*x)) : sqrt (-2*log (0.5*(2-x))); const double yn = ((((c[0]*q + c[1])*q + c[2])*q + c[3])*q + c[4])*q + c[5]; const double yd = (((d[0]*q + d[1])*q + d[2])*q + d[3])*q + 1.0; y = yn / yd; if (x < pbreak_lo) y = -y; } else if (x == 0.0) return octave_Inf; else if (x == 2.0) return -octave_Inf; else return octave_NaN; if (refine) { // One iteration of Halley's method gives full precision. double u = (erf (y) - (1-x)) * spi2 * exp (y*y); y -= u / (1 + y*u); } return y; } double erfcinv (double x) { return do_erfcinv (x, true); } float erfcinv (float x) { return do_erfcinv (x, false); } // // Incomplete Beta function ratio // // Algorithm based on the one by John Burkardt. // See http://people.sc.fsu.edu/~jburkardt/cpp_src/asa109/asa109.html // // The original code is distributed under the GNU LGPL v3 license. // // Reference: // // KL Majumder, GP Bhattacharjee, // Algorithm AS 63: // The incomplete Beta Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 409-411. // double betain (double x, double p, double q, double beta, bool& err) { double acu = 0.1E-14, ai, cx; bool indx; int ns; double pp, psq, qq, rx, temp, term, value, xx; value = x; err = false; // Check the input arguments. if ((p <= 0.0 || q <= 0.0) || (x < 0.0 || 1.0 < x)) { err = true; return value; } // Special cases. if (x == 0.0 || x == 1.0) { return value; } // Change tail if necessary and determine S. psq = p + q; cx = 1.0 - x; if (p < psq * x) { xx = cx; cx = x; pp = q; qq = p; indx = true; } else { xx = x; pp = p; qq = q; indx = false; } term = 1.0; ai = 1.0; value = 1.0; ns = static_cast<int> (qq + cx * psq); // Use the Soper reduction formula. rx = xx / cx; temp = qq - ai; if (ns == 0) { rx = xx; } for ( ; ; ) { term = term * temp * rx / (pp + ai); value = value + term; temp = fabs (term); if (temp <= acu && temp <= acu * value) { value = value * exp (pp * log (xx) + (qq - 1.0) * log (cx) - beta) / pp; if (indx) { value = 1.0 - value; } break; } ai = ai + 1.0; ns = ns - 1; if (0 <= ns) { temp = qq - ai; if (ns == 0) { rx = xx; } } else { temp = psq; psq = psq + 1.0; } } return value; } // // Inverse of the incomplete Beta function // // Algorithm based on the one by John Burkardt. // See http://people.sc.fsu.edu/~jburkardt/cpp_src/asa109/asa109.html // // The original code is distributed under the GNU LGPL v3 license. // // Reference: // // GW Cran, KJ Martin, GE Thomas, // Remark AS R19 and Algorithm AS 109: // A Remark on Algorithms AS 63: The Incomplete Beta Integral // and AS 64: Inverse of the Incomplete Beta Integeral, // Applied Statistics, // Volume 26, Number 1, 1977, pages 111-114. // double betaincinv (double y, double p, double q) { double a, acu, adj, fpu, g, h; int iex; bool indx; double pp, prev, qq, r, s, sae = -37.0, sq, t, tx, value, w, xin, ycur, yprev; double beta = xlgamma (p) + xlgamma (q) - xlgamma (p + q); bool err = false; fpu = pow (10.0, sae); value = y; // Test for admissibility of parameters. if (p <= 0.0 || q <= 0.0) { (*current_liboctave_error_handler) ("betaincinv: wrong parameters"); } if (y < 0.0 || 1.0 < y) { (*current_liboctave_error_handler) ("betaincinv: wrong parameter Y"); } if (y == 0.0 || y == 1.0) { return value; } // Change tail if necessary. if (0.5 < y) { a = 1.0 - y; pp = q; qq = p; indx = true; } else { a = y; pp = p; qq = q; indx = false; } // Calculate the initial approximation. r = sqrt (- log (a * a)); ycur = r - (2.30753 + 0.27061 * r) / (1.0 + (0.99229 + 0.04481 * r) * r); if (1.0 < pp && 1.0 < qq) { r = (ycur * ycur - 3.0) / 6.0; s = 1.0 / (pp + pp - 1.0); t = 1.0 / (qq + qq - 1.0); h = 2.0 / (s + t); w = ycur * sqrt (h + r) / h - (t - s) * (r + 5.0 / 6.0 - 2.0 / (3.0 * h)); value = pp / (pp + qq * exp (w + w)); } else { r = qq + qq; t = 1.0 / (9.0 * qq); t = r * pow (1.0 - t + ycur * sqrt (t), 3); if (t <= 0.0) { value = 1.0 - exp ((log ((1.0 - a) * qq) + beta) / qq); } else { t = (4.0 * pp + r - 2.0) / t; if (t <= 1.0) { value = exp ((log (a * pp) + beta) / pp); } else { value = 1.0 - 2.0 / (t + 1.0); } } } // Solve for X by a modified Newton-Raphson method, // using the function BETAIN. r = 1.0 - pp; t = 1.0 - qq; yprev = 0.0; sq = 1.0; prev = 1.0; if (value < 0.0001) { value = 0.0001; } if (0.9999 < value) { value = 0.9999; } iex = std::max (- 5.0 / pp / pp - 1.0 / pow (a, 0.2) - 13.0, sae); acu = pow (10.0, iex); for ( ; ; ) { ycur = betain (value, pp, qq, beta, err); if (err) { return value; } xin = value; ycur = (ycur - a) * exp (beta + r * log (xin) + t * log (1.0 - xin)); if (ycur * yprev <= 0.0) { prev = std::max (sq, fpu); } g = 1.0; for ( ; ; ) { for ( ; ; ) { adj = g * ycur; sq = adj * adj; if (sq < prev) { tx = value - adj; if (0.0 <= tx && tx <= 1.0) { break; } } g = g / 3.0; } if (prev <= acu) { if (indx) { value = 1.0 - value; } return value; } if (ycur * ycur <= acu) { if (indx) { value = 1.0 - value; } return value; } if (tx != 0.0 && tx != 1.0) { break; } g = g / 3.0; } if (tx == value) { break; } value = tx; yprev = ycur; } if (indx) { value = 1.0 - value; } return value; } Array<double> betaincinv (double x, double a, const Array<double>& b) { dim_vector dv = b.dims (); octave_idx_type nel = dv.numel (); Array<double> retval (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x, a, b(i)); return retval; } Array<double> betaincinv (double x, const Array<double>& a, double b) { dim_vector dv = a.dims (); octave_idx_type nel = dv.numel (); Array<double> retval (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x, a(i), b); return retval; } Array<double> betaincinv (double x, const Array<double>& a, const Array<double>& b) { Array<double> retval; dim_vector dv = a.dims (); if (dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x, a(i), b(i)); } else gripe_betaincinv_nonconformant (dim_vector (0, 0), dv, b.dims ()); return retval; } Array<double> betaincinv (const Array<double>& x, double a, double b) { dim_vector dv = x.dims (); octave_idx_type nel = dv.numel (); Array<double> retval (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x(i), a, b); return retval; } Array<double> betaincinv (const Array<double>& x, double a, const Array<double>& b) { Array<double> retval; dim_vector dv = x.dims (); if (dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x(i), a, b(i)); } else gripe_betaincinv_nonconformant (dv, dim_vector (0, 0), b.dims ()); return retval; } Array<double> betaincinv (const Array<double>& x, const Array<double>& a, double b) { Array<double> retval; dim_vector dv = x.dims (); if (dv == a.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x(i), a(i), b); } else gripe_betaincinv_nonconformant (dv, a.dims (), dim_vector (0, 0)); return retval; } Array<double> betaincinv (const Array<double>& x, const Array<double>& a, const Array<double>& b) { Array<double> retval; dim_vector dv = x.dims (); if (dv == a.dims () && dv == b.dims ()) { octave_idx_type nel = dv.numel (); retval.resize (dv); double *pretval = retval.fortran_vec (); for (octave_idx_type i = 0; i < nel; i++) *pretval++ = betaincinv (x(i), a(i), b(i)); } else gripe_betaincinv_nonconformant (dv, a.dims (), b.dims ()); return retval; } void ellipj (double u, double m, double& sn, double& cn, double& dn, double& err) { static const int Nmax = 16; double m1, t=0, si_u, co_u, se_u, ta_u, b, c[Nmax], a[Nmax], phi; int n, Nn, ii; if (m < 0 || m > 1) { (*current_liboctave_warning_handler) ("ellipj: expecting 0 <= M <= 1"); sn = cn = dn = lo_ieee_nan_value (); return; } double sqrt_eps = sqrt (std::numeric_limits<double>::epsilon ()); if (m < sqrt_eps) { // For small m, ( Abramowitz and Stegun, Section 16.13 ) si_u = sin (u); co_u = cos (u); t = 0.25*m*(u - si_u*co_u); sn = si_u - t * co_u; cn = co_u + t * si_u; dn = 1 - 0.5*m*si_u*si_u; } else if ((1 - m) < sqrt_eps) { // For m1 = (1-m) small ( Abramowitz and Stegun, Section 16.15 ) m1 = 1 - m; si_u = sinh (u); co_u = cosh (u); ta_u = tanh (u); se_u = 1/co_u; sn = ta_u + 0.25*m1*(si_u*co_u - u)*se_u*se_u; cn = se_u - 0.25*m1*(si_u*co_u - u)*ta_u*se_u; dn = se_u + 0.25*m1*(si_u*co_u + u)*ta_u*se_u; } else { // Arithmetic-Geometric Mean (AGM) algorithm // ( Abramowitz and Stegun, Section 16.4 ) a[0] = 1; b = sqrt (1 - m); c[0] = sqrt (m); for (n = 1; n < Nmax; ++n) { a[n] = (a[n - 1] + b)/2; c[n] = (a[n - 1] - b)/2; b = sqrt (a[n - 1]*b); if (c[n]/a[n] < std::numeric_limits<double>::epsilon ()) break; } if (n >= Nmax - 1) { err = 1; return; } Nn = n; for (ii = 1; n > 0; ii = ii*2, --n) ; // ii = pow(2,Nn) phi = ii*a[Nn]*u; for (n = Nn; n > 0; --n) { t = phi; phi = (asin ((c[n]/a[n])* sin (phi)) + phi)/2; } sn = sin (phi); cn = cos (phi); dn = cn/cos (t - phi); } } void ellipj (const Complex& u, double m, Complex& sn, Complex& cn, Complex& dn, double& err) { double m1 = 1 - m, ss1, cc1, dd1; ellipj (imag (u), m1, ss1, cc1, dd1, err); if (real (u) == 0) { // u is pure imag: Jacoby imag. transf. sn = Complex (0, ss1/cc1); cn = 1/cc1; // cn.imag = 0; dn = dd1/cc1; // dn.imag = 0; } else { // u is generic complex double ss, cc, dd, ddd; ellipj (real (u), m, ss, cc, dd, err); ddd = cc1*cc1 + m*ss*ss*ss1*ss1; sn = Complex (ss*dd1/ddd, cc*dd*ss1*cc1/ddd); cn = Complex (cc*cc1/ddd, -ss*dd*ss1*dd1/ddd); dn = Complex (dd*cc1*dd1/ddd, -m*ss*cc*ss1/ddd); } }