Mercurial > hg > octave-lyh
view scripts/statistics/tests/kolmogorov_smirnov_test.m @ 14207:57e3490094e1
Fix order of legend entries for plotyy. Bug # 35314.
* legend.m: Maintain the proper order of children for plotyy. Add demos.
author | Ben Abbott <bpabbott@mac.com> |
---|---|
date | Tue, 17 Jan 2012 07:30:06 -0500 |
parents | 72c96de7a403 |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{pval}, @var{ks}] =} kolmogorov_smirnov_test (@var{x}, @var{dist}, @var{params}, @var{alt}) ## Perform a Kolmogorov-Smirnov test of the null hypothesis that the ## sample @var{x} comes from the (continuous) distribution dist. I.e., ## if F and G are the CDFs corresponding to the sample and dist, ## respectively, then the null is that F == G. ## ## The optional argument @var{params} contains a list of parameters of ## @var{dist}. For example, to test whether a sample @var{x} comes from ## a uniform distribution on [2,4], use ## ## @example ## kolmogorov_smirnov_test(x, "unif", 2, 4) ## @end example ## ## @noindent ## @var{dist} can be any string for which a function @var{dist_cdf} ## that calculates the CDF of distribution @var{dist} exists. ## ## With the optional argument string @var{alt}, the alternative of ## interest can be selected. If @var{alt} is @code{"!="} or ## @code{"<>"}, the null is tested against the two-sided alternative F ## != G@. In this case, the test statistic @var{ks} follows a two-sided ## Kolmogorov-Smirnov distribution. If @var{alt} is @code{">"}, the ## one-sided alternative F > G is considered. Similarly for @code{"<"}, ## the one-sided alternative F > G is considered. In this case, the ## test statistic @var{ks} has a one-sided Kolmogorov-Smirnov ## distribution. The default is the two-sided case. ## ## The p-value of the test is returned in @var{pval}. ## ## If no output argument is given, the p-value is displayed. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: One-sample Kolmogorov-Smirnov test function [pval, ks] = kolmogorov_smirnov_test (x, dist, varargin) if (nargin < 2) print_usage (); endif if (! isvector (x)) error ("kolmogorov_smirnov_test: X must be a vector"); endif n = length (x); s = sort (x); try f = str2func (sprintf ("%scdf", dist)); catch try f = str2func (sprintf ("%s_cdf", dist)); catch error ("kolmogorov_smirnov_test: no %scdf or %s_cdf function found", dist, dist); end_try_catch end_try_catch alt = "!="; args{1} = s; nvargs = numel (varargin); if (nvargs > 0) if (ischar (varargin{end})) alt = varargin{end}; args(2:nvargs) = varargin(1:end-1); else args(2:nvargs+1) = varargin; endif endif z = reshape (feval (f, args{:}), 1, n); if (strcmp (alt, "!=") || strcmp (alt, "<>")) ks = sqrt (n) * max (max ([abs(z - (0:(n-1))/n); abs(z - (1:n)/n)])); pval = 1 - kolmogorov_smirnov_cdf (ks); elseif (strcmp (alt, ">")) ks = sqrt (n) * max (max ([z - (0:(n-1))/n; z - (1:n)/n])); pval = exp (- 2 * ks^2); elseif (strcmp (alt, "<")) ks = - sqrt (n) * min (min ([z - (0:(n-1))/n; z - (1:n)/n])); pval = exp (- 2 * ks^2); else error ("kolmogorov_smirnov_test: alternative %s not recognized", alt); endif if (nargout == 0) printf ("pval: %g\n", pval); endif endfunction %!error <Invalid call to kolmogorov_smirnov_test> %! kolmogorov_smirnov_test (1); %!error <kolmogorov_smirnov_test: X must be a vector> %! kolmogorov_smirnov_test ({}, "unif", 2, 4); %!error <kolmogorov_smirnov_test: no not_a_distcdf or not_a_dist_cdf function found> %! kolmogorov_smirnov_test (1, "not_a_dist"); %!error <kolmogorov_smirnov_test: alternative bla not recognized> %! kolmogorov_smirnov_test (1, "unif", 2, 4, "bla"); %!test # for recognition of unifcdf function %! assert (kolmogorov_smirnov_test (0:100, "unif", 0, 100), 1.0, eps); %!test # for recognition of logistic_cdf function %! assert (kolmogorov_smirnov_test (0:100, "logistic"), 0); %!test # F < G %! assert (kolmogorov_smirnov_test (50:100, "unif", 0, 50, "<"));