Mercurial > hg > octave-lyh
view scripts/optimization/fminsearch.m @ 17528:58471024eb11
Fully uint8 type support
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Fri, 27 Sep 2013 05:44:07 +0800 |
parents | bc924baa2c4e |
children |
line wrap: on
line source
## Copyright (C) 2003,2012 Andy Adler ## Copyright (C) 2002 N.J.Higham ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{x} =} fminsearch (@var{fun}, @var{x0}) ## @deftypefnx {Function File} {@var{x} =} fminsearch (@var{fun}, @var{x0}, @var{options}) ## @deftypefnx {Function File} {[@var{x}, @var{fval}] =} fminsearch (@dots{}) ## ## Find a value of @var{x} which minimizes the function @var{fun}. ## The search begins at the point @var{x0} and iterates using the ## Nelder & Mead Simplex algorithm (a derivative-free method). This algorithm ## is better-suited to functions which have discontinuities or for which ## a gradient-based search such as @code{fminunc} fails. ## ## Options for the search are provided in the parameter @var{options} using ## the function @code{optimset}. Currently, @code{fminsearch} accepts the ## options: @qcode{"TolX"}, @qcode{"MaxFunEvals"}, @qcode{"MaxIter"}, ## @qcode{"Display"}. For a description of these options, see ## @code{optimset}. ## ## On exit, the function returns @var{x}, the minimum point, ## and @var{fval}, the function value thereof. ## ## Example usages: ## ## @example ## @group ## fminsearch (@@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0]) ## ## fminsearch (inline ("(x(1)-5).^2+(x(2)-8).^4", "x"), [0;0]) ## @end group ## @end example ## @seealso{fminbnd, fminunc, optimset} ## @end deftypefn ## PKG_ADD: ## Discard result to avoid polluting workspace with ans at startup. ## PKG_ADD: [~] = __all_opts__ ("fminsearch"); ## FIXME: Add support for "exitflag" output variable ## FIXME: Add support for "output" output variable ## FIXME: For Display option, add 'final' and 'notify' options. Not too hard. ## FIXME: Add support for OutputFcn. See fminunc for a template ## FIXME: Add support for exiting based on TolFun. See fminunc for an idea. function [x, fval] = fminsearch (fun, x0, options = struct ()) ## Get default options if requested. if (nargin == 1 && ischar (fun) && strcmp (fun, "defaults")) x = optimset ("Display", "notify", "FunValCheck", "off", "MaxFunEvals", 400, "MaxIter", 400, "OutputFcn", [], "TolFun", 1e-7, "TolX", 1e-4); return; endif if (nargin < 2 || nargin > 3) print_usage (); endif x = nmsmax (fun, x0, options); if (isargout (2)) fval = feval (fun, x); endif endfunction ##NMSMAX Nelder-Mead simplex method for direct search optimization. ## [x, fmax, nf] = NMSMAX(FUN, x0, STOPIT, SAVIT) attempts to ## maximize the function FUN, using the starting vector x0. ## The Nelder-Mead direct search method is used. ## Output arguments: ## x = vector yielding largest function value found, ## fmax = function value at x, ## nf = number of function evaluations. ## The iteration is terminated when either ## - the relative size of the simplex is <= STOPIT(1) ## (default 1e-3), ## - STOPIT(2) function evaluations have been performed ## (default inf, i.e., no limit), or ## - a function value equals or exceeds STOPIT(3) ## (default inf, i.e., no test on function values). ## The form of the initial simplex is determined by STOPIT(4): ## STOPIT(4) = 0: regular simplex (sides of equal length, the default) ## STOPIT(4) = 1: right-angled simplex. ## Progress of the iteration is not shown if STOPIT(5) = 0 (default 1). ## STOPIT(6) indicates the direction (ie. minimization or ## maximization.) Default is 1, maximization. ## set STOPIT(6)=-1 for minimization ## If a non-empty fourth parameter string SAVIT is present, then ## 'SAVE SAVIT x fmax nf' is executed after each inner iteration. ## NB: x0 can be a matrix. In the output argument, in SAVIT saves, ## and in function calls, x has the same shape as x0. ## NMSMAX(fun, x0, STOPIT, SAVIT, P1, P2,...) allows additional ## arguments to be passed to fun, via feval(fun,x,P1,P2,...). ## References: ## N. J. Higham, Optimization by direct search in matrix computations, ## SIAM J. Matrix Anal. Appl, 14(2): 317-333, 1993. ## C. T. Kelley, Iterative Methods for Optimization, Society for Industrial ## and Applied Mathematics, Philadelphia, PA, 1999. ## From Matrix Toolbox ## Copyright (C) 2002 N.J.Higham ## www.maths.man.ac.uk/~higham/mctoolbox ## ## Modifications for Octave by A.Adler 2003 function [stopit, savit, dirn, trace, tol, maxiter] = parse_options (options, x ); ## Tolerance for cgce test based on relative size of simplex. stopit(1) = tol = optimget (options, "TolX", 1e-4); ## Max no. of f-evaluations. stopit(2) = optimget (options, "MaxFunEvals", length (x) * 200); ## Max no. of iterations maxiter = optimget (options, "MaxIter", length (x) * 200); ## Default target for f-values. stopit(3) = Inf; # FIXME: expose this parameter to the outside ## Default initial simplex. stopit(4) = 0; # FIXME: expose this parameter to the outside ## Default: show progress. display = optimget (options, "Display", "notify"); if (strcmp (display, "iter")) stopit(5) = 1; else stopit(5) = 0; endif trace = stopit(5); ## Use function to minimize, not maximize stopit(6) = dirn = -1; ## File name for snapshots. savit = []; # FIXME: expose this parameter to the outside endfunction function [x, fmax, nf] = nmsmax (fun, x, options, savit, varargin) [stopit, savit, dirn, trace, tol, maxiter] = parse_options (options, x); if (strcmpi (optimget (options, "FunValCheck", "off"), "on")) ## Replace fcn with a guarded version. fun = @(x) guarded_eval (fun, x); endif x0 = x(:); # Work with column vector internally. n = length (x0); V = [zeros(n,1) eye(n)]; f = zeros (n+1,1); V(:,1) = x0; f(1) = dirn * feval (fun,x,varargin{:}); fmax_old = f(1); if (trace) fprintf ("f(x0) = %9.4e\n", f(1)); endif k = 0; m = 0; ## Set up initial simplex. scale = max (norm (x0,Inf), 1); if (stopit(4) == 0) ## Regular simplex - all edges have same length. ## Generated from construction given in reference [18, pp. 80-81] of [1]. alpha = scale / (n*sqrt (2)) * [sqrt(n+1)-1+n, sqrt(n+1)-1]; V(:,2:n+1) = (x0 + alpha(2)*ones (n,1)) * ones (1,n); for j = 2:n+1 V(j-1,j) = x0(j-1) + alpha(1); x(:) = V(:,j); f(j) = dirn * feval (fun,x,varargin{:}); endfor else ## Right-angled simplex based on co-ordinate axes. alpha = scale * ones(n+1,1); for j=2:n+1 V(:,j) = x0 + alpha(j)*V(:,j); x(:) = V(:,j); f(j) = dirn * feval (fun,x,varargin{:}); endfor endif nf = n+1; how = "initial "; [~,j] = sort (f); j = j(n+1:-1:1); f = f(j); V = V(:,j); alpha = 1; beta = 1/2; gamma = 2; while (1) # Outer (and only) loop. k++; if (k > maxiter) msg = "Exceeded maximum iterations...quitting\n"; break; endif fmax = f(1); if (fmax > fmax_old) if (! isempty (savit)) x(:) = V(:,1); eval (["save " savit " x fmax nf"]); endif endif if (trace) fprintf ("Iter. %2.0f,", k); fprintf ([" how = " how " "]); fprintf ("nf = %3.0f, f = %9.4e (%2.1f%%)\n", nf, fmax, ... 100*(fmax-fmax_old)/(abs(fmax_old)+eps)); endif fmax_old = fmax; ## Three stopping tests from MDSMAX.M ## Stopping Test 1 - f reached target value? if (fmax >= stopit(3)) msg = "Exceeded target...quitting\n"; break; endif ## Stopping Test 2 - too many f-evals? if (nf >= stopit(2)) msg = "Max no. of function evaluations exceeded...quitting\n"; break; endif ## Stopping Test 3 - converged? This is test (4.3) in [1]. v1 = V(:,1); size_simplex = norm (V(:,2:n+1)-v1(:,ones (1,n)),1) / max (1, norm (v1,1)); if (size_simplex <= tol) msg = sprintf ("Simplex size %9.4e <= %9.4e...quitting\n", ... size_simplex, tol); break; endif ## One step of the Nelder-Mead simplex algorithm ## NJH: Altered function calls and changed CNT to NF. ## Changed each 'fr < f(1)' type test to '>' for maximization ## and re-ordered function values after sort. vbar = (sum (V(:,1:n)')/n)'; # Mean value vr = (1 + alpha)*vbar - alpha*V(:,n+1); x(:) = vr; fr = dirn * feval (fun,x,varargin{:}); nf = nf + 1; vk = vr; fk = fr; how = "reflect, "; if (fr > f(n)) if (fr > f(1)) ve = gamma*vr + (1-gamma)*vbar; x(:) = ve; fe = dirn * feval (fun,x,varargin{:}); nf = nf + 1; if (fe > f(1)) vk = ve; fk = fe; how = "expand, "; endif endif else vt = V(:,n+1); ft = f(n+1); if (fr > ft) vt = vr; ft = fr; endif vc = beta*vt + (1-beta)*vbar; x(:) = vc; fc = dirn * feval (fun,x,varargin{:}); nf = nf + 1; if (fc > f(n)) vk = vc; fk = fc; how = "contract,"; else for j = 2:n V(:,j) = (V(:,1) + V(:,j))/2; x(:) = V(:,j); f(j) = dirn * feval (fun,x,varargin{:}); endfor nf = nf + n-1; vk = (V(:,1) + V(:,n+1))/2; x(:) = vk; fk = dirn * feval (fun,x,varargin{:}); nf = nf + 1; how = "shrink, "; endif endif V(:,n+1) = vk; f(n+1) = fk; [~,j] = sort(f); j = j(n+1:-1:1); f = f(j); V = V(:,j); endwhile # End of outer (and only) loop. ## Finished. if (trace) fprintf (msg); endif x(:) = V(:,1); endfunction ## A helper function that evaluates a function and checks for bad results. function y = guarded_eval (fun, x) y = fun (x); if (! (isreal (f))) error ("fminsearch:notreal", "fminsearch: non-real value encountered"); elseif (any (isnan (f(:)))) error ("fminsearch:isnan", "fminsearch: NaN value encountered"); elseif (any (isinf (f(:)))) error ("fminsearch:isinf", "fminsearch: Inf value encountered"); endif endfunction %!demo %! fcn = @(x) (x(1)-5).^2 + (x(2)-8).^4 %! x0 = [0;0]; %! [xmin, fval] = fminsearch (fcn, x0) %!assert (fminsearch (@sin, 3, optimset ("MaxIter", 3)), 4.8750, 1e-4) %!assert (fminsearch (@sin, 3, optimset ("MaxIter", 30)), 4.7124, 1e-4) %!shared c %! c = 1.5; %!assert (fminsearch (@(x) x(1).^2+c*x(2).^2,[1;1]), [0;0], 1e-4)