Mercurial > hg > octave-lyh
view scripts/general/accumarray.m @ 13485:59d266f7ed89
Removed plotter tab.
author | Jacob Dawid <jacob.dawid@googlemail.com> |
---|---|
date | Wed, 27 Apr 2011 14:21:28 +0200 |
parents | 0ce4a9cd6a7f |
children | cefd568ea073 8d5f0b41e6b0 |
line wrap: on
line source
## Copyright (C) 2007-2011 David Bateman ## Copyright (C) 2009-2010 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} accumarray (@var{subs}, @var{vals}, @var{sz}, @var{func}, @var{fillval}, @var{issparse}) ## @deftypefnx {Function File} {} accumarray (@var{csubs}, @var{vals}, @dots{}) ## ## Create an array by accumulating the elements of a vector into the ## positions defined by their subscripts. The subscripts are defined by ## the rows of the matrix @var{subs} and the values by @var{vals}. Each row ## of @var{subs} corresponds to one of the values in @var{vals}. ## ## The size of the matrix will be determined by the subscripts themselves. ## However, if @var{sz} is defined it determines the matrix size. The length ## of @var{sz} must correspond to the number of columns in @var{subs}. ## ## The default action of @code{accumarray} is to sum the elements with the ## same subscripts. This behavior can be modified by defining the @var{func} ## function. This should be a function or function handle that accepts a ## column vector and returns a scalar. The result of the function should not ## depend on the order of the subscripts. ## ## The elements of the returned array that have no subscripts associated with ## them are set to zero. Defining @var{fillval} to some other value allows ## these values to be defined. ## ## By default @code{accumarray} returns a full matrix. If @var{issparse} is ## logically true, then a sparse matrix is returned instead. ## ## An example of the use of @code{accumarray} is: ## ## @example ## @group ## accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2], 101:105) ## @result{} ans(:,:,1) = [101, 0, 0; 0, 0, 0] ## ans(:,:,2) = [0, 0, 0; 206, 0, 208] ## @end group ## @end example ## ## The complexity in the non-sparse case is generally O(M+N), where N is the ## number of ## subscripts and M is the maximum subscript (linearized in multi-dimensional ## case). ## If @var{func} is one of @code{@@sum} (default), @code{@@max}, @code{@@min} ## or @code{@@(x) @{x@}}, an optimized code path is used. ## Note that for general reduction function the interpreter overhead can play a ## major part and it may be more efficient to do multiple accumarray calls and ## compute the results in a vectorized manner. ## @seealso{accumdim} ## @end deftypefn function A = accumarray (subs, vals, sz = [], func = [], fillval = [], issparse = []) if (nargin < 2 || nargin > 6) print_usage (); endif if (iscell (subs)) subs = cellfun (@vec, subs, "uniformoutput", false); ndims = numel (subs); if (ndims == 1) subs = subs{1}; endif else ndims = columns (subs); endif if (isempty (fillval)) fillval = 0; endif if (isempty (issparse)) issparse = false; endif if (issparse) ## Sparse case. Avoid linearizing the subscripts, because it could overflow. if (fillval != 0) error ("accumarray: FILLVAL must be zero in the sparse case"); endif ## Ensure subscripts are a two-column matrix. if (iscell (subs)) subs = [subs{:}]; endif ## Validate dimensions. if (ndims == 1) subs(:,2) = 1; elseif (ndims != 2) error ("accumarray: in the sparse case, needs 1 or 2 subscripts"); endif if (isnumeric (vals) || islogical (vals)) vals = double (vals); else error ("accumarray: in the sparse case, values must be numeric or logical"); endif if (! (isempty (func) || func == @sum)) ## Reduce values. This is not needed if we're about to sum them, because ## "sparse" can do that. ## Sort indices. [subs, idx] = sortrows (subs); n = rows (subs); ## Identify runs. jdx = find (any (diff (subs, 1, 1), 2)); jdx = [jdx; n]; vals = cellfun (func, mat2cell (vals(:)(idx), diff ([0; jdx]))); subs = subs(jdx, :); mode = "unique"; else mode = "sum"; endif ## Form the sparse matrix. if (isempty (sz)) A = sparse (subs(:,1), subs(:,2), vals, mode); elseif (length (sz) == 2) A = sparse (subs(:,1), subs(:,2), vals, sz(1), sz(2), mode); else error ("accumarray: dimensions mismatch"); endif else ## Linearize subscripts. if (ndims > 1) if (isempty (sz)) if (iscell (subs)) sz = cellfun (@max, subs); else sz = max (subs, [], 1); endif elseif (ndims != length (sz)) error ("accumarray: dimensions mismatch"); endif ## Convert multidimensional subscripts. if (ismatrix (subs)) subs = num2cell (subs, 1); endif subs = sub2ind (sz, subs{:}); # creates index cache elseif (! isempty (sz) && length (sz) < 2) error ("accumarray: needs at least 2 dimensions"); elseif (! isindex (subs)) # creates index cache error ("accumarray: indices must be positive integers"); endif ## Some built-in reductions handled efficiently. if (isempty (func) || func == @sum) ## Fast summation. if (isempty (sz)) A = __accumarray_sum__ (subs, vals); else A = __accumarray_sum__ (subs, vals, prod (sz)); ## set proper shape. A = reshape (A, sz); endif ## we fill in nonzero fill value. if (fillval != 0) mask = true (size (A)); mask(subs) = false; A(mask) = fillval; endif elseif (func == @max) ## Fast maximization. if (isinteger (vals)) zero = intmin (class (vals)); elseif (islogical (vals)) zero = false; elseif (fillval == 0 && all (vals(:) >= 0)) ## This is a common case - fillval is zero, all numbers nonegative. zero = 0; else zero = NaN; # Neutral value. endif if (isempty (sz)) A = __accumarray_max__ (subs, vals, zero); else A = __accumarray_max__ (subs, vals, zero, prod (sz)); A = reshape (A, sz); endif if (fillval != zero && ! (isnan (fillval) || isnan (zero))) mask = true (size (A)); mask(subs) = false; A(mask) = fillval; endif elseif (func == @min) ## Fast minimization. if (isinteger (vals)) zero = intmax (class (vals)); elseif (islogical (vals)) zero = true; else zero = NaN; # Neutral value. endif if (isempty (sz)) A = __accumarray_min__ (subs, vals, zero); else A = __accumarray_min__ (subs, vals, zero, prod (sz)); A = reshape (A, sz); endif if (fillval != zero && ! (isnan (fillval) || isnan (zero))) mask = true (size (A)); mask(subs) = false; A(mask) = fillval; endif else ## The general case. Reduce values. n = rows (subs); if (numel (vals) == 1) vals = vals(ones (1, n), 1); else vals = vals(:); endif ## Sort indices. [subs, idx] = sort (subs); ## Identify runs. jdx = find (subs(1:n-1) != subs(2:n)); jdx = [jdx; n]; vals = mat2cell (vals(idx), diff ([0; jdx])); ## Optimize the case when function is @(x) {x}, i.e. we just want to ## collect the values to cells. persistent simple_cell_str = func2str (@(x) {x}); if (! strcmp (func2str (func), simple_cell_str)) vals = cellfun (func, vals); endif subs = subs(jdx); ## Construct matrix of fillvals. if (iscell (vals)) A = cell (sz); elseif (fillval == 0) A = zeros (sz, class (vals)); else A = repmat (fillval, sz); endif ## Set the reduced values. A(subs) = vals; endif endif endfunction %!error (accumarray (1:5)) %!error (accumarray ([1,2,3],1:2)) %!assert (accumarray ([1;2;4;2;4],101:105), [101;206;0;208]) %!assert (accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2],101:105),cat(3, [101,0,0;0,0,0],[0,0,0;206,0,208])) %!assert (accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2],101:105,[],@(x)sin(sum(x))),sin(cat(3, [101,0,0;0,0,0],[0,0,0;206,0,208]))) %!assert (accumarray ({[1 3 3 2 3 1 2 2 3 3 1 2],[3 4 2 1 4 3 4 2 2 4 3 4],[1 1 2 2 1 1 2 1 1 1 2 2]},101:112),cat(3,[0,0,207,0;0,108,0,0;0,109,0,317],[0,0,111,0;104,0,0,219;0,103,0,0])) %!assert (accumarray ([1,1;2,1;2,3;2,1;2,3],101:105,[2,4],@max,NaN),[101,NaN,NaN,NaN;104,NaN,105,NaN]) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],101:105,[2 4],@prod,0,true),sparse([1,2,2],[1,1,3],[101,10608,10815],2,4)) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],1,[2,4]), [1,0,0,0;2,0,2,0]) %!assert (accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],101:105,[2,4],@(x)length(x)>1),[false,false,false,false;true,false,true,false]) %!test %! A = accumarray ([1 1; 2 1; 2 3; 2 1; 2 3],101:105,[2,4],@(x){x}); %! assert (A{2},[102;104]) %!test %! subs = ceil (rand (2000, 3)*10); %! vals = rand (2000, 1); %! assert (accumarray (subs, vals, [], @max), accumarray (subs, vals, [], @(x) max (x))); %!test %! subs = ceil (rand (2000, 1)*100); %! vals = rand (2000, 1); %! assert (accumarray (subs, vals, [100, 1], @min, NaN), accumarray (subs, vals, [100, 1], @(x) min (x), NaN)); %!test %! subs = ceil (rand (2000, 2)*30); %! subsc = num2cell (subs, 1); %! vals = rand (2000, 1); %! assert (accumarray (subsc, vals, [], [], 0, true), accumarray (subs, vals, [], [], 0, true)); %!test %! subs = ceil (rand (2000, 3)*10); %! subsc = num2cell (subs, 1); %! vals = rand (2000, 1); %! assert (accumarray (subsc, vals, [], @max), accumarray (subs, vals, [], @max));