Mercurial > hg > octave-lyh
view scripts/general/sortrows.m @ 13485:59d266f7ed89
Removed plotter tab.
author | Jacob Dawid <jacob.dawid@googlemail.com> |
---|---|
date | Wed, 27 Apr 2011 14:21:28 +0200 |
parents | c792872f8942 |
children | 4d777e05d47c |
line wrap: on
line source
## Copyright (C) 2000-2011 Daniel Calvelo ## Copyright (C) 2009 Jaroslav Hajek ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} sortrows (@var{A}, @var{c}) ## Sort the rows of the matrix @var{A} according to the order of the ## columns specified in @var{c}. If @var{c} is omitted, a ## lexicographical sort is used. By default ascending order is used ## however if elements of @var{c} are negative then the corresponding ## column is sorted in descending order. ## @end deftypefn ## Author: Daniel Calvelo, Paul Kienzle ## Adapted-by: jwe function [s, i] = sortrows (A, c) default_mode = "ascend"; other_mode = "descend"; if (issparse (A)) ## FIXME -- eliminate this case once __sort_rows_idx__ is fixed to ## handle sparse matrices. if (nargin == 1) i = sort_rows_idx_generic (default_mode, other_mode, A); else i = sort_rows_idx_generic (default_mode, other_mode, A, c); endif elseif (nargin == 1) i = __sort_rows_idx__ (A, default_mode); elseif (all (c > 0)) i = __sort_rows_idx__ (A(:,c), default_mode); elseif (all (c < 0)) i = __sort_rows_idx__ (A(:,-c), other_mode); else ## Otherwise, fall back to the old algorithm. i = sort_rows_idx_generic (default_mode, other_mode, A, c); endif ## Only bother to compute s if needed. if (isargout (1)) s = A(i,:); endif endfunction function i = sort_rows_idx_generic (default_mode, other_mode, m, c) if (nargin == 3) indices = [1:size(m,2)]'; mode(1:size(m,2)) = {default_mode}; else for ii = 1:length (c); if (c(ii) < 0) mode{ii} = other_mode; else mode{ii} = default_mode; endif endfor indices = abs(c(:)); endif ## Since sort is 'stable' the order of identical elements will be ## preserved, so by traversing the sort indices in reverse order we ## will make sure that identical elements in index i are subsorted by ## index j. indices = flipud (indices); mode = flipud (mode'); i = [1:size(m,1)]'; for ii = 1:length (indices); [trash, idx] = sort (m(i, indices(ii)), mode{ii}); i = i(idx); endfor endfunction %!test %! m = [1, 1; 1, 2; 3, 6; 2, 7]; %! c = [1, -2]; %! [x, idx] = sortrows (m, c); %! [sx, sidx] = sortrows (sparse (m), c); %! assert (x, [1, 2; 1, 1; 2, 7; 3, 6]); %! assert (idx, [2; 1; 4; 3]); %! assert (issparse (sx)); %! assert (x, full (sx)); %! assert (idx, sidx);