Mercurial > hg > octave-lyh
view scripts/general/interpn.m @ 14868:5d3a684236b0
maint: Use Octave coding conventions for cuddling parentheses in scripts directory
* lin2mu.m, loadaudio.m, wavread.m, accumarray.m, bicubic.m, celldisp.m,
colon.m, cplxpair.m, dblquad.m, divergence.m, genvarname.m, gradient.m,
int2str.m, interp1.m, interp1q.m, interp2.m, interpn.m, loadobj.m, nthargout.m,
__isequal__.m, __splinen__.m, quadgk.m, quadl.m, quadv.m, rat.m, rot90.m,
rotdim.m, saveobj.m, subsindex.m, triplequad.m, delaunay3.m, griddata.m,
inpolygon.m, tsearchn.m, voronoi.m, get_first_help_sentence.m, which.m,
gray2ind.m, pink.m, dlmwrite.m, strread.m, textread.m, textscan.m, housh.m,
ishermitian.m, issymmetric.m, krylov.m, logm.m, null.m, rref.m,
compare_versions.m, copyfile.m, dump_prefs.m, edit.m, fileparts.m,
getappdata.m, isappdata.m, movefile.m, orderfields.m, parseparams.m,
__xzip__.m, rmappdata.m, setappdata.m, swapbytes.m, unpack.m, ver.m, fminbnd.m,
fminunc.m, fsolve.m, glpk.m, lsqnonneg.m, qp.m, sqp.m, configure_make.m,
copy_files.m, describe.m, get_description.m, get_forge_pkg.m, install.m,
installed_packages.m, is_architecture_dependent.m, load_package_dirs.m,
print_package_description.m, rebuild.m, repackage.m, save_order.m, shell.m,
allchild.m, ancestor.m, area.m, axes.m, axis.m, clabel.m, close.m, colorbar.m,
comet.m, comet3.m, contour.m, cylinder.m, ezmesh.m, ezsurf.m, findobj.m,
fplot.m, hist.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m,
mesh.m, meshz.m, pareto.m, pcolor.m, peaks.m, plot3.m, plotmatrix.m, plotyy.m,
polar.m, print.m, __add_datasource__.m, __add_default_menu__.m,
__axes_limits__.m, __bar__.m, __clabel__.m, __contour__.m, __errcomm__.m,
__errplot__.m, __ezplot__.m, __file_filter__.m, __fltk_print__.m,
__ghostscript__.m, __gnuplot_print__.m, __go_draw_axes__.m,
__go_draw_figure__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m,
__pie__.m, __plt__.m, __print_parse_opts__.m, __quiver__.m, __scatter__.m,
__stem__.m, __tight_eps_bbox__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m,
__uiputfile_fltk__.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m,
ribbon.m, scatter.m, semilogy.m, shading.m, slice.m, subplot.m, surface.m,
surfl.m, surfnorm.m, text.m, uigetfile.m, uiputfile.m, whitebg.m, deconv.m,
mkpp.m, pchip.m, polyaffine.m, polyder.m, polygcd.m, polyout.m, polyval.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, splinefit.m,
addpref.m, getpref.m, setpref.m, ismember.m, setxor.m, arch_fit.m, arch_rnd.m,
arch_test.m, autoreg_matrix.m, diffpara.m, fftconv.m, filter2.m, hanning.m,
hurst.m, periodogram.m, triangle_sw.m, sinc.m, spectral_xdf.m, spencer.m,
stft.m, synthesis.m, unwrap.m, yulewalker.m, bicgstab.m, gmres.m, pcg.m, pcr.m,
__sprand_impl__.m, speye.m, spfun.m, sprandn.m, spstats.m, svds.m,
treelayout.m, treeplot.m, bessel.m, factor.m, legendre.m, perms.m, primes.m,
magic.m, toeplitz.m, corr.m, cov.m, mean.m, median.m, mode.m, qqplot.m,
quantile.m, ranks.m, zscore.m, logistic_regression_likelihood.m,
bartlett_test.m, chisquare_test_homogeneity.m, chisquare_test_independence.m,
kolmogorov_smirnov_test.m, run_test.m, u_test.m, wilcoxon_test.m, z_test.m,
z_test_2.m, bin2dec.m, dec2base.m, mat2str.m, strcat.m, strchr.m, strjust.m,
strtok.m, substr.m, untabify.m, assert.m, demo.m, example.m, fail.m, speed.m,
test.m, now.m: Use Octave coding conventions for cuddling parentheses in
scripts directory.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 17 Jul 2012 07:08:39 -0700 |
parents | f3d52523cde1 |
children | 486c3e2731ff |
line wrap: on
line source
## Copyright (C) 2007-2012 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{vi} =} interpn (@var{x1}, @var{x2}, @dots{}, @var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{y1}, @var{y2}, @dots{}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}, @var{m}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@var{v}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}) ## @deftypefnx {Function File} {@var{vi} =} interpn (@dots{}, @var{method}, @var{extrapval}) ## ## Perform @var{n}-dimensional interpolation, where @var{n} is at least two. ## Each element of the @var{n}-dimensional array @var{v} represents a value ## at a location given by the parameters @var{x1}, @var{x2}, @dots{}, @var{xn}. ## The parameters @var{x1}, @var{x2}, @dots{}, @var{xn} are either ## @var{n}-dimensional arrays of the same size as the array @var{v} in ## the "ndgrid" format or vectors. The parameters @var{y1}, etc. respect a ## similar format to @var{x1}, etc., and they represent the points at which ## the array @var{vi} is interpolated. ## ## If @var{x1}, @dots{}, @var{xn} are omitted, they are assumed to be ## @code{x1 = 1 : size (@var{v}, 1)}, etc. If @var{m} is specified, then ## the interpolation adds a point half way between each of the interpolation ## points. This process is performed @var{m} times. If only @var{v} is ## specified, then @var{m} is assumed to be @code{1}. ## ## Method is one of: ## ## @table @asis ## @item "nearest" ## Return the nearest neighbor. ## ## @item "linear" ## Linear interpolation from nearest neighbors. ## ## @item "cubic" ## Cubic interpolation from four nearest neighbors (not implemented yet). ## ## @item "spline" ## Cubic spline interpolation---smooth first and second derivatives ## throughout the curve. ## @end table ## ## The default method is "linear". ## ## If @var{extrapval} is the scalar value, use it to replace the values ## beyond the endpoints with that number. If @var{extrapval} is missing, ## assume NA. ## @seealso{interp1, interp2, spline, ndgrid} ## @end deftypefn function vi = interpn (varargin) method = "linear"; extrapval = NA; nargs = nargin; if (nargin < 1 || ! isnumeric (varargin{1})) print_usage (); endif if (ischar (varargin{end})) method = varargin{end}; nargs = nargs - 1; elseif (nargs > 1 && ischar (varargin{end - 1})) if (! isnumeric (varargin{end}) || ! isscalar (varargin{end})) error ("interpn: extrapal is expected to be a numeric scalar"); endif method = varargin{end - 1}; extrapval = varargin{end}; nargs = nargs - 2; endif if (nargs < 3) v = varargin{1}; m = 1; if (nargs == 2) if (ischar (varargin{2})) method = varargin{2}; elseif (isnumeric (m) && isscalar (m) && fix (m) == m) m = varargin{2}; else print_usage (); endif endif sz = size (v); nd = ndims (v); x = cell (1, nd); y = cell (1, nd); for i = 1 : nd; x{i} = 1 : sz(i); y{i} = 1 : (1 / (2 ^ m)) : sz(i); endfor y{1} = y{1}.'; [y{:}] = ndgrid (y{:}); elseif (! isvector (varargin{1}) && nargs == (ndims (varargin{1}) + 1)) v = varargin{1}; sz = size (v); nd = ndims (v); x = cell (1, nd); y = varargin (2 : nargs); for i = 1 : nd; x{i} = 1 : sz(i); endfor elseif (rem (nargs, 2) == 1 && nargs == (2 * ndims (varargin{ceil (nargs / 2)})) + 1) nv = ceil (nargs / 2); v = varargin{nv}; sz = size (v); nd = ndims (v); x = varargin (1 : (nv - 1)); y = varargin ((nv + 1) : nargs); else error ("interpn: wrong number or incorrectly formatted input arguments"); endif if (any (! cellfun ("isvector", x))) for i = 2 : nd if (! size_equal (x{1}, x{i}) || ! size_equal (x{i}, v)) error ("interpn: dimensional mismatch"); endif idx (1 : nd) = {1}; idx (i) = ":"; x{i} = x{i}(idx{:})(:); endfor idx (1 : nd) = {1}; idx (1) = ":"; x{1} = x{1}(idx{:})(:); endif method = tolower (method); all_vectors = all (cellfun ("isvector", y)); different_lengths = numel (unique (cellfun ("numel", y))) > 1; if (all_vectors && different_lengths) [foobar(1:numel(y)).y] = ndgrid (y{:}); y = {foobar.y}; endif if (strcmp (method, "linear")) vi = __lin_interpn__ (x{:}, v, y{:}); vi (isna (vi)) = extrapval; elseif (strcmp (method, "nearest")) yshape = size (y{1}); yidx = cell (1, nd); for i = 1 : nd y{i} = y{i}(:); yidx{i} = lookup (x{i}, y{i}, "lr"); endfor idx = cell (1,nd); for i = 1 : nd idx{i} = yidx{i} + (y{i} - x{i}(yidx{i})(:) >= x{i}(yidx{i} + 1)(:) - y{i}); endfor vi = v (sub2ind (sz, idx{:})); idx = zeros (prod (yshape), 1); for i = 1 : nd idx |= y{i} < min (x{i}(:)) | y{i} > max (x{i}(:)); endfor vi(idx) = extrapval; vi = reshape (vi, yshape); elseif (strcmp (method, "spline")) if (any (! cellfun ("isvector", y))) for i = 2 : nd if (! size_equal (y{1}, y{i})) error ("interpn: dimensional mismatch"); endif idx (1 : nd) = {1}; idx (i) = ":"; y{i} = y{i}(idx{:}); endfor idx (1 : nd) = {1}; idx (1) = ":"; y{1} = y{1}(idx{:}); endif vi = __splinen__ (x, v, y, extrapval, "interpn"); if (size_equal (y{:})) ly = length (y{1}); idx = cell (1, ly); q = cell (1, nd); for i = 1 : ly q(:) = i; idx {i} = q; endfor vi = vi (cellfun (@(x) sub2ind (size (vi), x{:}), idx)); vi = reshape (vi, size (y{1})); endif elseif (strcmp (method, "cubic")) error ("interpn: cubic interpolation not yet implemented"); else error ("interpn: unrecognized interpolation METHOD"); endif endfunction %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,4]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "linear").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,4]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "nearest").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!#demo # FIXME: Uncomment when support for "cubic" has been added %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,2]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "cubic").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!demo %! clf; %! colormap ("default"); %! A = [13,-1,12;5,4,3;1,6,2]; %! x = [0,1,2]; y = [10,11,12]; %! xi = linspace (min (x), max (x), 17); %! yi = linspace (min (y), max (y), 26)'; %! mesh (xi, yi, interpn (x,y,A.',xi,yi, "spline").'); %! [x,y] = meshgrid (x,y); %! hold on; plot3 (x(:),y(:),A(:),"b*"); hold off; %!demo %! clf; %! colormap ("default"); %! x = y = z = -1:1; %! f = @(x,y,z) x.^2 - y - z.^2; %! [xx, yy, zz] = meshgrid (x, y, z); %! v = f (xx,yy,zz); %! xi = yi = zi = -1:0.1:1; %! [xxi, yyi, zzi] = ndgrid (xi, yi, zi); %! vi = interpn (x, y, z, v, xxi, yyi, zzi, "spline"); %! mesh (yi, zi, squeeze (vi(1,:,:))); %!test %! [x,y,z] = ndgrid (0:2); %! f = x + y + z; %! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5]), [1.5, 4.5]); %! assert (interpn (x,y,z,f,[.51 1.51],[.51 1.51],[.51 1.51],"nearest"), [3, 6]); %! assert (interpn (x,y,z,f,[.5 1.5],[.5 1.5],[.5 1.5],"spline"), [1.5, 4.5]); %! assert (interpn (x,y,z,f,x,y,z), f); %! assert (interpn (x,y,z,f,x,y,z,"nearest"), f); %! assert (interpn (x,y,z,f,x,y,z,"spline"), f); %!test %! [x, y, z] = ndgrid (0:2, 1:4, 2:6); %! f = x + y + z; %! xi = [0.5 1.0 1.5]; yi = [1.5 2.0 2.5 3.5]; zi = [2.5 3.5 4.0 5.0 5.5]; %! fi = interpn (x, y, z, f, xi, yi, zi); %! [xi, yi, zi] = ndgrid (xi, yi, zi); %! assert (fi, xi + yi + zi); %!test %! xi = 0:2; yi = 1:4; zi = 2:6; %! [x, y, z] = ndgrid (xi, yi, zi); %! f = x + y + z; %! fi = interpn (x, y, z, f, xi, yi, zi, "nearest"); %! assert (fi, x + y + z); %!test %! [x,y,z] = ndgrid (0:2); %! f = x.^2 + y.^2 + z.^2; %! assert (interpn (x,y,-z,f,1.5,1.5,-1.5), 7.5); %!test # for Matlab-compatible rounding for "nearest" %! x = meshgrid (1:4); %! assert (interpn (x, 2.5, 2.5, "nearest"), 3); %!test %! z = zeros (3, 3, 3); %! zout = zeros (5, 5, 5); %! z(:,:,1) = [1 3 5; 3 5 7; 5 7 9]; %! z(:,:,2) = z(:,:,1) + 2; %! z(:,:,3) = z(:,:,2) + 2; %! for n = 1:5 %! zout(:,:,n) = [1 2 3 4 5; %! 2 3 4 5 6; %! 3 4 5 6 7; %! 4 5 6 7 8; %! 5 6 7 8 9] + (n-1); %! endfor %! tol = 10*eps; %! assert (interpn (z), zout, tol); %! assert (interpn (z, "linear"), zout, tol); %! assert (interpn (z, "spline"), zout, tol);