view scripts/polynomial/mkpp.m @ 14868:5d3a684236b0

maint: Use Octave coding conventions for cuddling parentheses in scripts directory * lin2mu.m, loadaudio.m, wavread.m, accumarray.m, bicubic.m, celldisp.m, colon.m, cplxpair.m, dblquad.m, divergence.m, genvarname.m, gradient.m, int2str.m, interp1.m, interp1q.m, interp2.m, interpn.m, loadobj.m, nthargout.m, __isequal__.m, __splinen__.m, quadgk.m, quadl.m, quadv.m, rat.m, rot90.m, rotdim.m, saveobj.m, subsindex.m, triplequad.m, delaunay3.m, griddata.m, inpolygon.m, tsearchn.m, voronoi.m, get_first_help_sentence.m, which.m, gray2ind.m, pink.m, dlmwrite.m, strread.m, textread.m, textscan.m, housh.m, ishermitian.m, issymmetric.m, krylov.m, logm.m, null.m, rref.m, compare_versions.m, copyfile.m, dump_prefs.m, edit.m, fileparts.m, getappdata.m, isappdata.m, movefile.m, orderfields.m, parseparams.m, __xzip__.m, rmappdata.m, setappdata.m, swapbytes.m, unpack.m, ver.m, fminbnd.m, fminunc.m, fsolve.m, glpk.m, lsqnonneg.m, qp.m, sqp.m, configure_make.m, copy_files.m, describe.m, get_description.m, get_forge_pkg.m, install.m, installed_packages.m, is_architecture_dependent.m, load_package_dirs.m, print_package_description.m, rebuild.m, repackage.m, save_order.m, shell.m, allchild.m, ancestor.m, area.m, axes.m, axis.m, clabel.m, close.m, colorbar.m, comet.m, comet3.m, contour.m, cylinder.m, ezmesh.m, ezsurf.m, findobj.m, fplot.m, hist.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m, mesh.m, meshz.m, pareto.m, pcolor.m, peaks.m, plot3.m, plotmatrix.m, plotyy.m, polar.m, print.m, __add_datasource__.m, __add_default_menu__.m, __axes_limits__.m, __bar__.m, __clabel__.m, __contour__.m, __errcomm__.m, __errplot__.m, __ezplot__.m, __file_filter__.m, __fltk_print__.m, __ghostscript__.m, __gnuplot_print__.m, __go_draw_axes__.m, __go_draw_figure__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m, __pie__.m, __plt__.m, __print_parse_opts__.m, __quiver__.m, __scatter__.m, __stem__.m, __tight_eps_bbox__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m, __uiputfile_fltk__.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m, ribbon.m, scatter.m, semilogy.m, shading.m, slice.m, subplot.m, surface.m, surfl.m, surfnorm.m, text.m, uigetfile.m, uiputfile.m, whitebg.m, deconv.m, mkpp.m, pchip.m, polyaffine.m, polyder.m, polygcd.m, polyout.m, polyval.m, ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, splinefit.m, addpref.m, getpref.m, setpref.m, ismember.m, setxor.m, arch_fit.m, arch_rnd.m, arch_test.m, autoreg_matrix.m, diffpara.m, fftconv.m, filter2.m, hanning.m, hurst.m, periodogram.m, triangle_sw.m, sinc.m, spectral_xdf.m, spencer.m, stft.m, synthesis.m, unwrap.m, yulewalker.m, bicgstab.m, gmres.m, pcg.m, pcr.m, __sprand_impl__.m, speye.m, spfun.m, sprandn.m, spstats.m, svds.m, treelayout.m, treeplot.m, bessel.m, factor.m, legendre.m, perms.m, primes.m, magic.m, toeplitz.m, corr.m, cov.m, mean.m, median.m, mode.m, qqplot.m, quantile.m, ranks.m, zscore.m, logistic_regression_likelihood.m, bartlett_test.m, chisquare_test_homogeneity.m, chisquare_test_independence.m, kolmogorov_smirnov_test.m, run_test.m, u_test.m, wilcoxon_test.m, z_test.m, z_test_2.m, bin2dec.m, dec2base.m, mat2str.m, strcat.m, strchr.m, strjust.m, strtok.m, substr.m, untabify.m, assert.m, demo.m, example.m, fail.m, speed.m, test.m, now.m: Use Octave coding conventions for cuddling parentheses in scripts directory.
author Rik <octave@nomad.inbox5.com>
date Tue, 17 Jul 2012 07:08:39 -0700
parents f3d52523cde1
children b81b9d079515
line wrap: on
line source

## Copyright (C) 2000-2012 Paul Kienzle
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs})
## @deftypefnx {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}, @var{d})
##
## Construct a piecewise polynomial (pp) structure from sample points
## @var{breaks} and coefficients @var{coefs}.  @var{breaks} must be a vector of
## strictly increasing values.  The number of intervals is given by
## @code{@var{ni} = length (@var{breaks}) - 1}.
## When @var{m} is the polynomial order @var{coefs} must be of
## size: @var{ni} x @var{m} + 1.
##
## The i-th row of @var{coefs},
## @code{@var{coefs} (@var{i},:)}, contains the coefficients for the polynomial
## over the @var{i}-th interval, ordered from highest (@var{m}) to
## lowest (@var{0}).
##
## @var{coefs} may also be a multi-dimensional array, specifying a vector-valued
## or array-valued polynomial.  In that case the polynomial order is defined
## by the length of the last dimension of @var{coefs}.
## The size of first dimension(s) are given by the scalar or
## vector @var{d}.  If @var{d} is not given it is set to @code{1}.
## In any case @var{coefs} is reshaped to a 2-D matrix of
## size @code{[@var{ni}*prod(@var{d} @var{m})] }
##
## @seealso{unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps}
## @end deftypefn

function pp = mkpp (x, P, d)

  # check number of arguments
  if (nargin < 2 || nargin > 3)
    print_usage ();
  endif

  # check x
  if (length (x) < 2)
    error ("mkpp: at least one interval is needed");
  endif

  if (!isvector (x))
    error ("mkpp: x must be a vector");
  endif

  len = length (x) - 1;
  dP = length (size (P));

  pp = struct ("form", "pp",
               "breaks", x(:).',
               "coefs", [],
               "pieces", len,
               "order", prod (size (P)) / len,
               "dim", 1);

  if (nargin == 3)
    pp.dim = d;
    pp.order /= prod (d);
  endif

  dim_vec = [pp.pieces * prod(pp.dim), pp.order];
  pp.coefs = reshape (P, dim_vec);

endfunction


%!demo # linear interpolation
%! x = linspace (0,pi,5)';
%! t = [sin(x), cos(x)];
%! m = diff (t) ./ (x(2)-x(1));
%! b = t(1:4,:);
%! pp = mkpp (x, [m(:),b(:)]);
%! xi = linspace (0,pi,50);
%! plot (x,t,"x", xi,ppval (pp,xi));
%! legend ("control", "interp");

%!shared b,c,pp
%! b = 1:3; c = 1:24; pp = mkpp (b,c);
%!assert (pp.pieces, 2)
%!assert (pp.order, 12)
%!assert (pp.dim, 1)
%!assert (size (pp.coefs), [2,12])
%! pp = mkpp (b,c,2);
%!assert (pp.pieces, 2)
%!assert (pp.order, 6)
%!assert (pp.dim, 2)
%!assert (size (pp.coefs), [4,6])
%! pp = mkpp (b,c,3);
%!assert (pp.pieces, 2)
%!assert (pp.order, 4)
%!assert (pp.dim, 3)
%!assert (size (pp.coefs), [6,4])
%! pp = mkpp (b,c,[2,3]);
%!assert (pp.pieces, 2)
%!assert (pp.order, 2)
%!assert (pp.dim, [2,3])
%!assert (size (pp.coefs), [12,2])