Mercurial > hg > octave-lyh
view scripts/polynomial/mkpp.m @ 14868:5d3a684236b0
maint: Use Octave coding conventions for cuddling parentheses in scripts directory
* lin2mu.m, loadaudio.m, wavread.m, accumarray.m, bicubic.m, celldisp.m,
colon.m, cplxpair.m, dblquad.m, divergence.m, genvarname.m, gradient.m,
int2str.m, interp1.m, interp1q.m, interp2.m, interpn.m, loadobj.m, nthargout.m,
__isequal__.m, __splinen__.m, quadgk.m, quadl.m, quadv.m, rat.m, rot90.m,
rotdim.m, saveobj.m, subsindex.m, triplequad.m, delaunay3.m, griddata.m,
inpolygon.m, tsearchn.m, voronoi.m, get_first_help_sentence.m, which.m,
gray2ind.m, pink.m, dlmwrite.m, strread.m, textread.m, textscan.m, housh.m,
ishermitian.m, issymmetric.m, krylov.m, logm.m, null.m, rref.m,
compare_versions.m, copyfile.m, dump_prefs.m, edit.m, fileparts.m,
getappdata.m, isappdata.m, movefile.m, orderfields.m, parseparams.m,
__xzip__.m, rmappdata.m, setappdata.m, swapbytes.m, unpack.m, ver.m, fminbnd.m,
fminunc.m, fsolve.m, glpk.m, lsqnonneg.m, qp.m, sqp.m, configure_make.m,
copy_files.m, describe.m, get_description.m, get_forge_pkg.m, install.m,
installed_packages.m, is_architecture_dependent.m, load_package_dirs.m,
print_package_description.m, rebuild.m, repackage.m, save_order.m, shell.m,
allchild.m, ancestor.m, area.m, axes.m, axis.m, clabel.m, close.m, colorbar.m,
comet.m, comet3.m, contour.m, cylinder.m, ezmesh.m, ezsurf.m, findobj.m,
fplot.m, hist.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m,
mesh.m, meshz.m, pareto.m, pcolor.m, peaks.m, plot3.m, plotmatrix.m, plotyy.m,
polar.m, print.m, __add_datasource__.m, __add_default_menu__.m,
__axes_limits__.m, __bar__.m, __clabel__.m, __contour__.m, __errcomm__.m,
__errplot__.m, __ezplot__.m, __file_filter__.m, __fltk_print__.m,
__ghostscript__.m, __gnuplot_print__.m, __go_draw_axes__.m,
__go_draw_figure__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m,
__pie__.m, __plt__.m, __print_parse_opts__.m, __quiver__.m, __scatter__.m,
__stem__.m, __tight_eps_bbox__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m,
__uiputfile_fltk__.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m,
ribbon.m, scatter.m, semilogy.m, shading.m, slice.m, subplot.m, surface.m,
surfl.m, surfnorm.m, text.m, uigetfile.m, uiputfile.m, whitebg.m, deconv.m,
mkpp.m, pchip.m, polyaffine.m, polyder.m, polygcd.m, polyout.m, polyval.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, splinefit.m,
addpref.m, getpref.m, setpref.m, ismember.m, setxor.m, arch_fit.m, arch_rnd.m,
arch_test.m, autoreg_matrix.m, diffpara.m, fftconv.m, filter2.m, hanning.m,
hurst.m, periodogram.m, triangle_sw.m, sinc.m, spectral_xdf.m, spencer.m,
stft.m, synthesis.m, unwrap.m, yulewalker.m, bicgstab.m, gmres.m, pcg.m, pcr.m,
__sprand_impl__.m, speye.m, spfun.m, sprandn.m, spstats.m, svds.m,
treelayout.m, treeplot.m, bessel.m, factor.m, legendre.m, perms.m, primes.m,
magic.m, toeplitz.m, corr.m, cov.m, mean.m, median.m, mode.m, qqplot.m,
quantile.m, ranks.m, zscore.m, logistic_regression_likelihood.m,
bartlett_test.m, chisquare_test_homogeneity.m, chisquare_test_independence.m,
kolmogorov_smirnov_test.m, run_test.m, u_test.m, wilcoxon_test.m, z_test.m,
z_test_2.m, bin2dec.m, dec2base.m, mat2str.m, strcat.m, strchr.m, strjust.m,
strtok.m, substr.m, untabify.m, assert.m, demo.m, example.m, fail.m, speed.m,
test.m, now.m: Use Octave coding conventions for cuddling parentheses in
scripts directory.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 17 Jul 2012 07:08:39 -0700 |
parents | f3d52523cde1 |
children | b81b9d079515 |
line wrap: on
line source
## Copyright (C) 2000-2012 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}) ## @deftypefnx {Function File} {@var{pp} =} mkpp (@var{breaks}, @var{coefs}, @var{d}) ## ## Construct a piecewise polynomial (pp) structure from sample points ## @var{breaks} and coefficients @var{coefs}. @var{breaks} must be a vector of ## strictly increasing values. The number of intervals is given by ## @code{@var{ni} = length (@var{breaks}) - 1}. ## When @var{m} is the polynomial order @var{coefs} must be of ## size: @var{ni} x @var{m} + 1. ## ## The i-th row of @var{coefs}, ## @code{@var{coefs} (@var{i},:)}, contains the coefficients for the polynomial ## over the @var{i}-th interval, ordered from highest (@var{m}) to ## lowest (@var{0}). ## ## @var{coefs} may also be a multi-dimensional array, specifying a vector-valued ## or array-valued polynomial. In that case the polynomial order is defined ## by the length of the last dimension of @var{coefs}. ## The size of first dimension(s) are given by the scalar or ## vector @var{d}. If @var{d} is not given it is set to @code{1}. ## In any case @var{coefs} is reshaped to a 2-D matrix of ## size @code{[@var{ni}*prod(@var{d} @var{m})] } ## ## @seealso{unmkpp, ppval, spline, pchip, ppder, ppint, ppjumps} ## @end deftypefn function pp = mkpp (x, P, d) # check number of arguments if (nargin < 2 || nargin > 3) print_usage (); endif # check x if (length (x) < 2) error ("mkpp: at least one interval is needed"); endif if (!isvector (x)) error ("mkpp: x must be a vector"); endif len = length (x) - 1; dP = length (size (P)); pp = struct ("form", "pp", "breaks", x(:).', "coefs", [], "pieces", len, "order", prod (size (P)) / len, "dim", 1); if (nargin == 3) pp.dim = d; pp.order /= prod (d); endif dim_vec = [pp.pieces * prod(pp.dim), pp.order]; pp.coefs = reshape (P, dim_vec); endfunction %!demo # linear interpolation %! x = linspace (0,pi,5)'; %! t = [sin(x), cos(x)]; %! m = diff (t) ./ (x(2)-x(1)); %! b = t(1:4,:); %! pp = mkpp (x, [m(:),b(:)]); %! xi = linspace (0,pi,50); %! plot (x,t,"x", xi,ppval (pp,xi)); %! legend ("control", "interp"); %!shared b,c,pp %! b = 1:3; c = 1:24; pp = mkpp (b,c); %!assert (pp.pieces, 2) %!assert (pp.order, 12) %!assert (pp.dim, 1) %!assert (size (pp.coefs), [2,12]) %! pp = mkpp (b,c,2); %!assert (pp.pieces, 2) %!assert (pp.order, 6) %!assert (pp.dim, 2) %!assert (size (pp.coefs), [4,6]) %! pp = mkpp (b,c,3); %!assert (pp.pieces, 2) %!assert (pp.order, 4) %!assert (pp.dim, 3) %!assert (size (pp.coefs), [6,4]) %! pp = mkpp (b,c,[2,3]); %!assert (pp.pieces, 2) %!assert (pp.order, 2) %!assert (pp.dim, [2,3]) %!assert (size (pp.coefs), [12,2])