Mercurial > hg > octave-lyh
view scripts/polynomial/pchip.m @ 14868:5d3a684236b0
maint: Use Octave coding conventions for cuddling parentheses in scripts directory
* lin2mu.m, loadaudio.m, wavread.m, accumarray.m, bicubic.m, celldisp.m,
colon.m, cplxpair.m, dblquad.m, divergence.m, genvarname.m, gradient.m,
int2str.m, interp1.m, interp1q.m, interp2.m, interpn.m, loadobj.m, nthargout.m,
__isequal__.m, __splinen__.m, quadgk.m, quadl.m, quadv.m, rat.m, rot90.m,
rotdim.m, saveobj.m, subsindex.m, triplequad.m, delaunay3.m, griddata.m,
inpolygon.m, tsearchn.m, voronoi.m, get_first_help_sentence.m, which.m,
gray2ind.m, pink.m, dlmwrite.m, strread.m, textread.m, textscan.m, housh.m,
ishermitian.m, issymmetric.m, krylov.m, logm.m, null.m, rref.m,
compare_versions.m, copyfile.m, dump_prefs.m, edit.m, fileparts.m,
getappdata.m, isappdata.m, movefile.m, orderfields.m, parseparams.m,
__xzip__.m, rmappdata.m, setappdata.m, swapbytes.m, unpack.m, ver.m, fminbnd.m,
fminunc.m, fsolve.m, glpk.m, lsqnonneg.m, qp.m, sqp.m, configure_make.m,
copy_files.m, describe.m, get_description.m, get_forge_pkg.m, install.m,
installed_packages.m, is_architecture_dependent.m, load_package_dirs.m,
print_package_description.m, rebuild.m, repackage.m, save_order.m, shell.m,
allchild.m, ancestor.m, area.m, axes.m, axis.m, clabel.m, close.m, colorbar.m,
comet.m, comet3.m, contour.m, cylinder.m, ezmesh.m, ezsurf.m, findobj.m,
fplot.m, hist.m, isocolors.m, isonormals.m, isosurface.m, isprop.m, legend.m,
mesh.m, meshz.m, pareto.m, pcolor.m, peaks.m, plot3.m, plotmatrix.m, plotyy.m,
polar.m, print.m, __add_datasource__.m, __add_default_menu__.m,
__axes_limits__.m, __bar__.m, __clabel__.m, __contour__.m, __errcomm__.m,
__errplot__.m, __ezplot__.m, __file_filter__.m, __fltk_print__.m,
__ghostscript__.m, __gnuplot_print__.m, __go_draw_axes__.m,
__go_draw_figure__.m, __interp_cube__.m, __marching_cube__.m, __patch__.m,
__pie__.m, __plt__.m, __print_parse_opts__.m, __quiver__.m, __scatter__.m,
__stem__.m, __tight_eps_bbox__.m, __uigetdir_fltk__.m, __uigetfile_fltk__.m,
__uiputfile_fltk__.m, quiver.m, quiver3.m, rectangle.m, refreshdata.m,
ribbon.m, scatter.m, semilogy.m, shading.m, slice.m, subplot.m, surface.m,
surfl.m, surfnorm.m, text.m, uigetfile.m, uiputfile.m, whitebg.m, deconv.m,
mkpp.m, pchip.m, polyaffine.m, polyder.m, polygcd.m, polyout.m, polyval.m,
ppint.m, ppjumps.m, ppval.m, residue.m, roots.m, spline.m, splinefit.m,
addpref.m, getpref.m, setpref.m, ismember.m, setxor.m, arch_fit.m, arch_rnd.m,
arch_test.m, autoreg_matrix.m, diffpara.m, fftconv.m, filter2.m, hanning.m,
hurst.m, periodogram.m, triangle_sw.m, sinc.m, spectral_xdf.m, spencer.m,
stft.m, synthesis.m, unwrap.m, yulewalker.m, bicgstab.m, gmres.m, pcg.m, pcr.m,
__sprand_impl__.m, speye.m, spfun.m, sprandn.m, spstats.m, svds.m,
treelayout.m, treeplot.m, bessel.m, factor.m, legendre.m, perms.m, primes.m,
magic.m, toeplitz.m, corr.m, cov.m, mean.m, median.m, mode.m, qqplot.m,
quantile.m, ranks.m, zscore.m, logistic_regression_likelihood.m,
bartlett_test.m, chisquare_test_homogeneity.m, chisquare_test_independence.m,
kolmogorov_smirnov_test.m, run_test.m, u_test.m, wilcoxon_test.m, z_test.m,
z_test_2.m, bin2dec.m, dec2base.m, mat2str.m, strcat.m, strchr.m, strjust.m,
strtok.m, substr.m, untabify.m, assert.m, demo.m, example.m, fail.m, speed.m,
test.m, now.m: Use Octave coding conventions for cuddling parentheses in
scripts directory.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 17 Jul 2012 07:08:39 -0700 |
parents | 86854d032a37 |
children | f3b5cadfd6d5 |
line wrap: on
line source
## Copyright (C) 2001-2012 Kai Habel ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{pp} =} pchip (@var{x}, @var{y}) ## @deftypefnx {Function File} {@var{yi} =} pchip (@var{x}, @var{y}, @var{xi}) ## Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of ## points @var{x} and @var{y}. ## ## If called with two arguments, return the piecewise polynomial @var{pp} ## that may be used with @code{ppval} to evaluate the polynomial at specific ## points. When called with a third input argument, @code{pchip} evaluates ## the pchip polynomial at the points @var{xi}. The third calling form is ## equivalent to @code{ppval (pchip (@var{x}, @var{y}), @var{xi})}. ## ## The variable @var{x} must be a strictly monotonic vector (either ## increasing or decreasing) of length @var{n}. @var{y} can be either a ## vector or array. If @var{y} is a vector then it must be the same length ## @var{n} as @var{x}. If @var{y} is an array then the size of @var{y} must ## have the form ## @tex ## $$[s_1, s_2, \cdots, s_k, n]$$ ## @end tex ## @ifnottex ## @code{[@var{s1}, @var{s2}, @dots{}, @var{sk}, @var{n}]} ## @end ifnottex ## The array is reshaped internally to a matrix where the leading ## dimension is given by ## @tex ## $$s_1 s_2 \cdots s_k$$ ## @end tex ## @ifnottex ## @code{@var{s1} * @var{s2} * @dots{} * @var{sk}} ## @end ifnottex ## and each row of this matrix is then treated separately. Note that this ## is exactly opposite to @code{interp1} but is done for @sc{matlab} ## compatibility. ## ## @seealso{spline, ppval, mkpp, unmkpp} ## @end deftypefn ## Author: Kai Habel <kai.habel@gmx.de> ## Date: 9. mar 2001 ## ## S_k = a_k + b_k*x + c_k*x^2 + d_k*x^3; (spline polynom) ## ## 4 conditions: ## S_k(x_k) = y_k; ## S_k(x_k+1) = y_k+1; ## S_k'(x_k) = y_k'; ## S_k'(x_k+1) = y_k+1'; function ret = pchip (x, y, xi) if (nargin < 2 || nargin > 3) print_usage (); endif ## make row vector x = x(:).'; n = length (x); ## Check the size and shape of y if (isvector (y)) y = y(:).'; ##row vector szy = size (y); if (! size_equal (x, y)) error ("pchip: length of X and Y must match") endif else szy = size (y); if (n != szy(end)) error ("pchip: length of X and last dimension of Y must match") endif y = reshape (y, [prod(szy(1:end-1)), szy(end)]); endif h = diff (x); if (all (h < 0)) x = fliplr (x); h = diff (x); y = fliplr (y); elseif (any (h <= 0)) error ("pchip: X must be strictly monotonic"); endif f1 = y(:, 1:n-1); ## Compute derivatives. d = __pchip_deriv__ (x, y, 2); d1 = d(:, 1:n-1); d2 = d(:, 2:n); ## This is taken from SLATEC. h = diag (h); delta = diff (y, 1, 2) / h; del1 = (d1 - delta) / h; del2 = (d2 - delta) / h; c3 = del1 + del2; c2 = -c3 - del1; c3 = c3 / h; coeffs = cat (3, c3, c2, d1, f1); ret = mkpp (x, coeffs, szy(1:end-1)); if (nargin == 3) ret = ppval (ret, xi); endif endfunction %!demo %! x = 0:8; %! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0]; %! xi = 0:0.01:8; %! yspline = spline (x,y,xi); %! ypchip = pchip (x,y,xi); %! title ("pchip and spline fit to discontinuous function"); %! plot (xi,yspline, xi,ypchip,"-", x,y,"+"); %! legend ("spline", "pchip", "data"); %! %------------------------------------------------------------------- %! % confirm that pchip agreed better to discontinuous data than spline %!shared x, y, y2, pp, yi1, yi2, yi3 %! x = 0:8; %! y = [1, 1, 1, 1, 0.5, 0, 0, 0, 0]; %!assert (pchip (x,y,x), y) %!assert (pchip (x,y,x'), y') %!assert (pchip (x',y',x'), y') %!assert (pchip (x',y',x), y) %!assert (isempty (pchip (x',y',[]))) %!assert (isempty (pchip (x,y,[]))) %!assert (pchip (x,[y;y],x), [pchip(x,y,x);pchip(x,y,x)]) %!assert (pchip (x,[y;y],x'), [pchip(x,y,x);pchip(x,y,x)]) %!assert (pchip (x',[y;y],x), [pchip(x,y,x);pchip(x,y,x)]) %!assert (pchip (x',[y;y],x'), [pchip(x,y,x);pchip(x,y,x)]) %!test %! x = (0:8)*pi/4; y = [sin(x); cos(x)]; %! y2(:,:,1) = y; y2(:,:,2) = y+1; y2(:,:,3) = y-1; %! pp = pchip (x, shiftdim (y2,2)); %! yi1 = ppval (pp, (1:4)*pi/4); %! yi2 = ppval (pp, repmat ((1:4)*pi/4, [5,1])); %! yi3 = ppval (pp, [pi/2,pi]); %!assert (size (pp.coefs), [48,4]) %!assert (pp.pieces, 8) %!assert (pp.order, 4) %!assert (pp.dim, [3,2]) %!assert (ppval (pp,pi), [0,-1;1,0;-1,-2], 1e-14) %!assert (yi3(:,:,2), ppval (pp,pi), 1e-14) %!assert (yi3(:,:,1), [1,0;2,1;0,-1], 1e-14) %!assert (squeeze (yi1(1,2,:)), [1/sqrt(2); 0; -1/sqrt(2);-1], 1e-14) %!assert (size (yi2), [3,2,5,4]) %!assert (squeeze (yi2(1,2,3,:)), [1/sqrt(2); 0; -1/sqrt(2);-1], 1e-14) %!error (pchip (1,2)); %!error (pchip (1,2,3));