Mercurial > hg > octave-lyh
view liboctave/Range.cc @ 11450:5eb10763069f
substitute and use LAPACK_LIBS in mkoctfile script
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 06 Jan 2011 03:10:24 -0500 |
parents | e5ae13b8b2c2 |
children | fd0a3ac60b0e |
line wrap: on
line source
/* Copyright (C) 1993, 1994, 1995, 1996, 1997, 2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <iostream> #include <limits> #include "Range.h" #include "lo-error.h" #include "lo-mappers.h" #include "lo-math.h" #include "lo-utils.h" #include "Array-util.h" Range::Range (double b, double i, octave_idx_type n) : rng_base (b), rng_limit (b + n * i), rng_inc (i), rng_nelem (n), cache () { if (! xfinite (b) || ! xfinite (i)) rng_nelem = -2; } bool Range::all_elements_are_ints (void) const { // If the base and increment are ints, the final value in the range // will also be an integer, even if the limit is not. If there is one // or fewer elements only the base needs to be an integer return (! (xisnan (rng_base) || xisnan (rng_inc)) && (NINTbig (rng_base) == rng_base || rng_nelem < 1) && (NINTbig (rng_inc) == rng_inc || rng_nelem <= 1)); } Matrix Range::matrix_value (void) const { if (rng_nelem > 0 && cache.nelem () == 0) { cache.resize (1, rng_nelem); double b = rng_base; double increment = rng_inc; for (octave_idx_type i = 0; i < rng_nelem; i++) cache(i) = b + i * increment; // On some machines (x86 with extended precision floating point // arithmetic, for example) it is possible that we can overshoot // the limit by approximately the machine precision even though // we were very careful in our calculation of the number of // elements. if ((rng_inc > 0 && cache(rng_nelem-1) > rng_limit) || (rng_inc < 0 && cache(rng_nelem-1) < rng_limit)) cache(rng_nelem-1) = rng_limit; } return cache; } double Range::checkelem (octave_idx_type i) const { if (i < 0 || i >= rng_nelem) gripe_index_out_of_range (1, 1, i+1, rng_nelem); return rng_base + rng_inc * i; } struct _rangeidx_helper { double *array, base, inc; _rangeidx_helper (double *a, double b, double i) : array (a), base (b), inc (i) { } void operator () (octave_idx_type i) { *array++ = base + i * inc; } }; Array<double> Range::index (const idx_vector& i) const { Array<double> retval; octave_idx_type n = rng_nelem; if (i.is_colon ()) { retval = matrix_value ().reshape (dim_vector (rng_nelem, 1)); } else { if (i.extent (n) != n) gripe_index_out_of_range (1, 1, i.extent (n), n); // throws dim_vector rd = i.orig_dimensions (); octave_idx_type il = i.length (n); // taken from Array.cc. if (n != 1 && rd.is_vector ()) rd = dim_vector (1, il); retval.clear (rd); i.loop (n, _rangeidx_helper (retval.fortran_vec (), rng_base, rng_inc)); } return retval; } // NOTE: max and min only return useful values if nelem > 0. double Range::min (void) const { double retval = 0.0; if (rng_nelem > 0) { if (rng_inc > 0) retval = rng_base; else { retval = rng_base + (rng_nelem - 1) * rng_inc; // See the note in the matrix_value method above. if (retval < rng_limit) retval = rng_limit; } } return retval; } double Range::max (void) const { double retval = 0.0; if (rng_nelem > 0) { if (rng_inc > 0) { retval = rng_base + (rng_nelem - 1) * rng_inc; // See the note in the matrix_value method above. if (retval > rng_limit) retval = rng_limit; } else retval = rng_base; } return retval; } void Range::sort_internal (bool ascending) { if (ascending && rng_base > rng_limit && rng_inc < 0.0) { double tmp = rng_base; rng_base = min (); rng_limit = tmp; rng_inc = -rng_inc; clear_cache (); } else if (! ascending && rng_base < rng_limit && rng_inc > 0.0) { double tmp = rng_limit; rng_limit = min (); rng_base = tmp; rng_inc = -rng_inc; clear_cache (); } } void Range::sort_internal (Array<octave_idx_type>& sidx, bool ascending) { octave_idx_type nel = nelem (); sidx.resize (dim_vector (1, nel)); octave_idx_type *psidx = sidx.fortran_vec (); bool reverse = false; if (ascending && rng_base > rng_limit && rng_inc < 0.0) { double tmp = rng_base; rng_base = min (); rng_limit = tmp; rng_inc = -rng_inc; clear_cache (); reverse = true; } else if (! ascending && rng_base < rng_limit && rng_inc > 0.0) { double tmp = rng_limit; rng_limit = min (); rng_base = tmp; rng_inc = -rng_inc; clear_cache (); reverse = true; } octave_idx_type tmp = reverse ? nel - 1 : 0; octave_idx_type stp = reverse ? -1 : 1; for (octave_idx_type i = 0; i < nel; i++, tmp += stp) psidx[i] = tmp; } Matrix Range::diag (octave_idx_type k) const { return matrix_value ().diag (k); } Range Range::sort (octave_idx_type dim, sortmode mode) const { Range retval = *this; if (dim == 1) { if (mode == ASCENDING) retval.sort_internal (true); else if (mode == DESCENDING) retval.sort_internal (false); } else if (dim != 0) (*current_liboctave_error_handler) ("Range::sort: invalid dimension"); return retval; } Range Range::sort (Array<octave_idx_type>& sidx, octave_idx_type dim, sortmode mode) const { Range retval = *this; if (dim == 1) { if (mode == ASCENDING) retval.sort_internal (sidx, true); else if (mode == DESCENDING) retval.sort_internal (sidx, false); } else if (dim != 0) (*current_liboctave_error_handler) ("Range::sort: invalid dimension"); return retval; } sortmode Range::is_sorted (sortmode mode) const { if (rng_nelem > 1 && rng_inc < 0) mode = (mode == ASCENDING) ? UNSORTED : DESCENDING; else if (rng_nelem > 1 && rng_inc > 0) mode = (mode == DESCENDING) ? UNSORTED : ASCENDING; else mode = mode ? mode : ASCENDING; return mode; } std::ostream& operator << (std::ostream& os, const Range& a) { double b = a.base (); double increment = a.inc (); octave_idx_type num_elem = a.nelem (); for (octave_idx_type i = 0; i < num_elem-1; i++) os << b + i * increment << " "; // Prevent overshoot. See comment in the matrix_value method // above. os << (increment > 0 ? a.max () : a.min ()) << "\n"; return os; } std::istream& operator >> (std::istream& is, Range& a) { is >> a.rng_base; if (is) { is >> a.rng_limit; if (is) { is >> a.rng_inc; a.rng_nelem = a.nelem_internal (); } } return is; } Range operator - (const Range& r) { return Range (-r.base (), -r.inc (), r.nelem ()); } Range operator + (double x, const Range& r) { Range result (x + r.base (), r.inc (), r.nelem ()); if (result.rng_nelem < 0) result.cache = x + r.matrix_value (); return result; } Range operator + (const Range& r, double x) { Range result (r.base () + x, r.inc (), r.nelem ()); if (result.rng_nelem < 0) result.cache = r.matrix_value () + x; return result; } Range operator - (double x, const Range& r) { Range result (x - r.base (), -r.inc (), r.nelem ()); if (result.rng_nelem < 0) result.cache = x - r.matrix_value (); return result; } Range operator - (const Range& r, double x) { Range result (r.base () - x, r.inc (), r.nelem ()); if (result.rng_nelem < 0) result.cache = r.matrix_value () - x; return result; } Range operator * (double x, const Range& r) { Range result (x * r.base (), x * r.inc (), r.nelem ()); if (result.rng_nelem < 0) result.cache = x * r.matrix_value (); return result; } Range operator * (const Range& r, double x) { Range result (r.base () * x, r.inc () * x, r.nelem ()); if (result.rng_nelem < 0) result.cache = r.matrix_value () * x; return result; } // C See Knuth, Art Of Computer Programming, Vol. 1, Problem 1.2.4-5. // C // C===Tolerant FLOOR function. // C // C X - is given as a Double Precision argument to be operated on. // C It is assumed that X is represented with M mantissa bits. // C CT - is given as a Comparison Tolerance such that // C 0.LT.CT.LE.3-SQRT(5)/2. If the relative difference between // C X and A whole number is less than CT, then TFLOOR is // C returned as this whole number. By treating the // C floating-point numbers as a finite ordered set note that // C the heuristic EPS=2.**(-(M-1)) and CT=3*EPS causes // C arguments of TFLOOR/TCEIL to be treated as whole numbers // C if they are exactly whole numbers or are immediately // C adjacent to whole number representations. Since EPS, the // C "distance" between floating-point numbers on the unit // C interval, and M, the number of bits in X'S mantissa, exist // C on every floating-point computer, TFLOOR/TCEIL are // C consistently definable on every floating-point computer. // C // C For more information see the following references: // C (1) P. E. Hagerty, "More On Fuzzy Floor And Ceiling," APL QUOTE // C QUAD 8(4):20-24, June 1978. Note that TFLOOR=FL5. // C (2) L. M. Breed, "Definitions For Fuzzy Floor And Ceiling", APL // C QUOTE QUAD 8(3):16-23, March 1978. This paper cites FL1 through // C FL5, the history of five years of evolutionary development of // C FL5 - the seven lines of code below - by open collaboration // C and corroboration of the mathematical-computing community. // C // C Penn State University Center for Academic Computing // C H. D. Knoble - August, 1978. static inline double tfloor (double x, double ct) { // C---------FLOOR(X) is the largest integer algebraically less than // C or equal to X; that is, the unfuzzy FLOOR function. // DINT (X) = X - DMOD (X, 1.0); // FLOOR (X) = DINT (X) - DMOD (2.0 + DSIGN (1.0, X), 3.0); // C---------Hagerty's FL5 function follows... double q = 1.0; if (x < 0.0) q = 1.0 - ct; double rmax = q / (2.0 - ct); double t1 = 1.0 + gnulib::floor (x); t1 = (ct / q) * (t1 < 0.0 ? -t1 : t1); t1 = rmax < t1 ? rmax : t1; t1 = ct > t1 ? ct : t1; t1 = gnulib::floor (x + t1); if (x <= 0.0 || (t1 - x) < rmax) return t1; else return t1 - 1.0; } static inline double tceil (double x, double ct) { return -tfloor (-x, ct); } static inline bool teq (double u, double v, double ct = 3.0 * DBL_EPSILON) { double tu = fabs (u); double tv = fabs (v); return fabs (u - v) < ((tu > tv ? tu : tv) * ct); } octave_idx_type Range::nelem_internal (void) const { octave_idx_type retval = -1; if (rng_inc == 0 || (rng_limit > rng_base && rng_inc < 0) || (rng_limit < rng_base && rng_inc > 0)) { retval = 0; } else { double ct = 3.0 * DBL_EPSILON; double tmp = tfloor ((rng_limit - rng_base + rng_inc) / rng_inc, ct); octave_idx_type n_elt = (tmp > 0.0 ? static_cast<octave_idx_type> (tmp) : 0); // If the final element that we would compute for the range is // equal to the limit of the range, or is an adjacent floating // point number, accept it. Otherwise, try a range with one // fewer element. If that fails, try again with one more // element. // // I'm not sure this is very good, but it seems to work better than // just using tfloor as above. For example, without it, the // expression 1.8:0.05:1.9 fails to produce the expected result of // [1.8, 1.85, 1.9]. if (! teq (rng_base + (n_elt - 1) * rng_inc, rng_limit)) { if (teq (rng_base + (n_elt - 2) * rng_inc, rng_limit)) n_elt--; else if (teq (rng_base + n_elt * rng_inc, rng_limit)) n_elt++; } retval = (n_elt >= std::numeric_limits<octave_idx_type>::max () - 1) ? -1 : n_elt; } return retval; }