Mercurial > hg > octave-lyh
view scripts/statistics/distributions/geoinv.m @ 17409:6643f21e27f3
doc: Document the form of the geometric distribution being used (II) in geo* functions.
* scripts/statistics/distributions/geocdf.m,
scripts/statistics/distributions/geoinv.m,
scripts/statistics/distributions/geopdf.m,
scripts/statistics/distributions/geornd.m: Document the form of the geometric
distribution being used (II) in geo* functions.
author | Rik <rik@octave.org> |
---|---|
date | Tue, 10 Sep 2013 07:28:20 -0700 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} geoinv (@var{x}, @var{p}) ## For each element of @var{x}, compute the quantile (the inverse of ## the CDF) at @var{x} of the geometric distribution with parameter @var{p}. ## ## The geometric distribution models the number of failures (@var{x}-1) of a ## Bernoulli trial with probability @var{p} before the first success (@var{x}). ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the geometric distribution function inv = geoinv (x, p) if (nargin != 2) print_usage (); endif if (!isscalar (p)) [retval, x, p] = common_size (x, p); if (retval > 0) error ("geoinv: X and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (p)) error ("geoinv: X and P must not be complex"); endif if (isa (x, "single") || isa (p, "single")) inv = NaN (size (x), "single"); else inv = NaN (size (x)); endif k = (x == 1) & (p >= 0) & (p <= 1); inv(k) = Inf; k = (x >= 0) & (x < 1) & (p > 0) & (p <= 1); if (isscalar (p)) inv(k) = max (ceil (log (1 - x(k)) / log (1 - p)) - 1, 0); else inv(k) = max (ceil (log (1 - x(k)) ./ log (1 - p(k))) - 1, 0); endif endfunction %!shared x %! x = [-1 0 0.75 1 2]; %!assert (geoinv (x, 0.5*ones (1,5)), [NaN 0 1 Inf NaN]) %!assert (geoinv (x, 0.5), [NaN 0 1 Inf NaN]) %!assert (geoinv (x, 0.5*[1 -1 NaN 4 1]), [NaN NaN NaN NaN NaN]) %!assert (geoinv ([x(1:2) NaN x(4:5)], 0.5), [NaN 0 NaN Inf NaN]) %% Test class of input preserved %!assert (geoinv ([x, NaN], 0.5), [NaN 0 1 Inf NaN NaN]) %!assert (geoinv (single ([x, NaN]), 0.5), single ([NaN 0 1 Inf NaN NaN])) %!assert (geoinv ([x, NaN], single (0.5)), single ([NaN 0 1 Inf NaN NaN])) %% Test input validation %!error geoinv () %!error geoinv (1) %!error geoinv (1,2,3) %!error geoinv (ones (3), ones (2)) %!error geoinv (ones (2), ones (3)) %!error geoinv (i, 2) %!error geoinv (2, i)