Mercurial > hg > octave-lyh
view scripts/sparse/svds.m @ 17193:6992c1bb4773
svds.m: Initialize flag variable so interpreter doesn't use flag() colormap instead.
* scripts/sparse/svds.m: Initialize flag variable so interpreter doesn't use
flag() colormap instead.
author | Rik <rik@octave.org> |
---|---|
date | Mon, 05 Aug 2013 14:18:50 -0700 |
parents | c8bbab6b9e7a |
children | 9deb214ae9d5 |
line wrap: on
line source
## Copyright (C) 2006-2012 David Bateman ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {@var{s} =} svds (@var{A}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{A}, @var{k}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}) ## @deftypefnx {Function File} {@var{s} =} svds (@var{A}, @var{k}, @var{sigma}, @var{opts}) ## @deftypefnx {Function File} {[@var{u}, @var{s}, @var{v}] =} svds (@dots{}) ## @deftypefnx {Function File} {[@var{u}, @var{s}, @var{v}, @var{flag}] =} svds (@dots{}) ## ## Find a few singular values of the matrix @var{A}. The singular values ## are calculated using ## ## @example ## @group ## [@var{m}, @var{n}] = size (@var{A}); ## @var{s} = eigs ([sparse(@var{m}, @var{m}), @var{A}; ## @var{A}', sparse(@var{n}, @var{n})]) ## @end group ## @end example ## ## The eigenvalues returned by @code{eigs} correspond to the singular values ## of @var{A}. The number of singular values to calculate is given by @var{k} ## and defaults to 6. ## ## The argument @var{sigma} specifies which singular values to find. When ## @var{sigma} is the string 'L', the default, the largest singular values of ## @var{A} are found. Otherwise, @var{sigma} must be a real scalar and the ## singular values closest to @var{sigma} are found. As a corollary, ## @code{@var{sigma} = 0} finds the smallest singular values. Note that for ## relatively small values of @var{sigma}, there is a chance that the requested ## number of singular values will not be found. In that case @var{sigma} ## should be increased. ## ## @var{opts} is a structure defining options that @code{svds} will pass ## to @code{eigs}. The possible fields of this structure are documented in ## @code{eigs}. By default, @code{svds} sets the following three fields: ## ## @table @code ## @item tol ## The required convergence tolerance for the singular values. The default ## value is 1e-10. @code{eigs} is passed @code{@var{tol} / sqrt(2)}. ## ## @item maxit ## The maximum number of iterations. The default is 300. ## ## @item disp ## The level of diagnostic printout (0|1|2). If @code{disp} is 0 then ## diagnostics are disabled. The default value is 0. ## @end table ## ## If more than one output is requested then @code{svds} will return an ## approximation of the singular value decomposition of @var{A} ## ## @example ## @var{A}_approx = @var{u}*@var{s}*@var{v}' ## @end example ## ## @noindent ## where @var{A}_approx is a matrix of size @var{A} but only rank @var{k}. ## ## @var{flag} returns 0 if the algorithm has succesfully converged, and 1 ## otherwise. The test for convergence is ## ## @example ## @group ## norm (@var{A}*@var{v} - @var{u}*@var{s}, 1) <= @var{tol} * norm (@var{A}, 1) ## @end group ## @end example ## ## @code{svds} is best for finding only a few singular values from a large ## sparse matrix. Otherwise, @code{svd (full (@var{A}))} will likely be more ## efficient. ## @end deftypefn ## @seealso{svd, eigs} function [u, s, v, flag] = svds (A, k, sigma, opts) persistent root2 = sqrt (2); if (nargin < 1 || nargin > 4) print_usage (); endif if (ndims (A) > 2) error ("svds: A must be a 2D matrix"); endif if (nargin < 4) opts.tol = 0; ## use ARPACK default opts.disp = 0; opts.maxit = 300; else if (!isstruct (opts)) error ("svds: OPTS must be a structure"); endif if (!isfield (opts, "tol")) opts.tol = 0; ## use ARPACK default else opts.tol = opts.tol / root2; endif if (isfield (opts, "v0")) if (!isvector (opts.v0) || (length (opts.v0) != sum (size (A)))) error ("svds: OPTS.v0 must be a vector with rows(A)+columns(A) entries"); endif endif endif if (nargin < 3 || strcmp (sigma, "L")) if (isreal (A)) sigma = "LA"; else sigma = "LR"; endif elseif (isscalar (sigma) && isnumeric (sigma) && isreal (sigma)) if (sigma < 0) error ("svds: SIGMA must be a positive real value"); endif else error ("svds: SIGMA must be a positive real value or the string 'L'"); endif [m, n] = size (A); max_a = max (abs (nonzeros (A))); if (isempty (max_a)) max_a = 0; endif ## Must initialize variable value, otherwise it may appear to interpreter ## that code is trying to call flag() colormap function. flag = 0; if (max_a == 0) s = zeros (k, 1); # special case of zero matrix else if (nargin < 2) k = min ([6, m, n]); else k = min ([k, m, n]); endif ## Scale everything by the 1-norm to make things more stable. b = A / max_a; b_opts = opts; ## Call to eigs is always a symmetric matrix by construction b_opts.issym = true; b_sigma = sigma; if (!ischar (b_sigma)) b_sigma = b_sigma / max_a; endif if (b_sigma == 0) ## Find the smallest eigenvalues ## The eigenvalues returns by eigs for sigma=0 are symmetric about 0. ## As we are only interested in the positive eigenvalues, we have to ## double k and then throw out the k negative eigenvalues. ## Separately, if sigma is non-zero, but smaller than the smallest ## singular value, ARPACK may not return k eigenvalues. However, as ## computation scales with k we'd like to avoid doubling k for all ## scalar values of sigma. b_k = 2 * k; else b_k = k; # Normal case, find just the k largest eigenvalues endif if (nargout > 1) [V, s, flag] = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts); s = diag (s); else s = eigs ([sparse(m,m), b; b', sparse(n,n)], b_k, b_sigma, b_opts); endif if (ischar (sigma)) norma = max (s); else norma = normest (A); endif ## We wish to exclude all eigenvalues that are less than zero as these ## are artifacts of the way the matrix passed to eigs is formed. There ## is also the possibility that the value of sigma chosen is exactly ## a singular value, and in that case we're dead!! So have to rely on ## the warning from eigs. We exclude the singular values which are ## less than or equal to zero to within some tolerance scaled by the ## norm since if we don't we might end up with too many singular ## values. tol = norma * opts.tol; ind = find (s > tol); if (length (ind) < k) ## Too few eigenvalues returned. Add in any zero eigenvalues of B, ## including the nominally negative ones. zind = find (abs (s) <= tol); p = min (length (zind), k - length (ind)); ind = [ind; zind(1:p)]; elseif (length (ind) > k) ## Too many eigenvalues returned. Select according to criterium. if (b_sigma == 0) ind = ind(end+1-k:end); # smallest eigenvalues else ind = ind(1:k); # largest eigenvalues endif endif s = s(ind); if (length (s) < k) warning ("returning fewer singular values than requested"); if (!ischar (sigma)) warning ("try increasing the value of sigma"); endif endif s = s * max_a; endif if (nargout < 2) u = s; else if (max_a == 0) u = eye (m, k); s = diag (s); v = eye (n, k); else u = root2 * V(1:m,ind); s = diag (s); v = root2 * V(m+1:end,ind); endif if (nargout > 3) flag = (flag != 0); endif endif endfunction %!shared n, k, A, u, s, v, opts, rand_state, randn_state, tol %! n = 100; %! k = 7; %! A = sparse ([3:n,1:n,1:(n-2)],[1:(n-2),1:n,3:n],[ones(1,n-2),0.4*n*ones(1,n),ones(1,n-2)]); %! [u,s,v] = svd (full (A)); %! s = diag (s); %! [~, idx] = sort (abs (s)); %! s = s(idx); %! u = u(:, idx); %! v = v(:, idx); %! randn_state = randn ("state"); %! rand_state = rand ("state"); %! randn ("state", 42); % Initialize to make normest function reproducible %! rand ("state", 42); %! opts.v0 = rand (2*n,1); % Initialize eigs ARPACK starting vector %! % to guarantee reproducible results %! %!testif HAVE_ARPACK %! [u2,s2,v2,flag] = svds (A,k); %! s2 = diag (s2); %! assert (flag, !1); %! tol = 10 * eps() * norm(s2, 1); %! assert (s2, s(end:-1:end-k+1), tol); %! %!testif HAVE_ARPACK, HAVE_UMFPACK %! [u2,s2,v2,flag] = svds (A,k,0,opts); %! s2 = diag (s2); %! assert (flag, !1); %! tol = 10 * eps() * norm(s2, 1); %! assert (s2, s(k:-1:1), tol); %! %!testif HAVE_ARPACK, HAVE_UMFPACK %! idx = floor (n/2); %! % Don't put sigma right on a singular value or there are convergence issues %! sigma = 0.99*s(idx) + 0.01*s(idx+1); %! [u2,s2,v2,flag] = svds (A,k,sigma,opts); %! s2 = diag (s2); %! assert (flag, !1); %! tol = 10 * eps() * norm(s2, 1); %! assert (s2, s((idx+floor(k/2)):-1:(idx-floor(k/2))), tol); %! %!testif HAVE_ARPACK %! [u2,s2,v2,flag] = svds (zeros (10), k); %! assert (u2, eye (10, k)); %! assert (s2, zeros (k)); %! assert (v2, eye (10, 7)); %! %!testif HAVE_ARPACK %! s = svds (speye (10)); %! assert (s, ones (6, 1), 4*eps); %!test %! ## Restore random number generator seeds at end of tests %! rand ("state", rand_state); %! randn ("state", randn_state);