Mercurial > hg > octave-lyh
view scripts/statistics/distributions/kolmogorov_smirnov_cdf.m @ 5577:6ada1581e8b4
[project @ 2005-12-13 19:20:14 by jwe]
author | jwe |
---|---|
date | Tue, 13 Dec 2005 19:20:14 +0000 |
parents | 2a16423e4aa0 |
children | 34f96dd5441b |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} kolmogorov_smirnov_cdf (@var{x}, @var{tol}) ## Return the CDF at @var{x} of the Kolmogorov-Smirnov distribution, ## @iftex ## @tex ## $$ Q(x) = sum_{k=-\infty}^\infty (-1)^k exp(-2 k^2 x^2) $$ ## @end tex ## @end iftex ## @ifinfo ## @example ## Inf ## Q(x) = SUM (-1)^k exp(-2 k^2 x^2) ## k = -Inf ## @end example ## @end ifinfo ## ## @noindent ## for @var{x} > 0. ## ## The optional parameter @var{tol} specifies the precision up to which ## the series should be evaluated; the default is @var{tol} = @code{eps}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: CDF of the Kolmogorov-Smirnov distribution function cdf = kolmogorov_smirnov_cdf (x, tol) if (nargin < 1 || nargin > 2) usage ("kolmogorov_smirnov_cdf (x, tol)"); endif if (nargin == 1) tol = eps; else if (! isscalar (tol) || ! (tol > 0)) error ("kolmogorov_smirnov_cdf: tol has to be a positive scalar"); endif endif n = numel (x); if (n == 0) error ("kolmogorov_smirnov_cdf: x must not be empty"); endif cdf = zeros (size (x)); ind = find (x > 0); if (length (ind) > 0) if (size(ind,2) < size(ind,1)) y = x(ind.'); else y = x(ind); endif K = ceil (sqrt (- log (tol) / 2) / min (y)); k = (1:K)'; A = exp (- 2 * k.^2 * y.^2); odd = find (rem (k, 2) == 1); A(odd,:) = -A(odd,:); cdf(ind) = 1 + 2 * sum (A); endif endfunction