Mercurial > hg > octave-lyh
view scripts/statistics/distributions/weibpdf.m @ 5577:6ada1581e8b4
[project @ 2005-12-13 19:20:14 by jwe]
author | jwe |
---|---|
date | Tue, 13 Dec 2005 19:20:14 +0000 |
parents | 2a16423e4aa0 |
children |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ## 02110-1301, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {} weibpdf (@var{x}, @var{alpha}, @var{sigma}) ## Compute the probability density function (PDF) at @var{x} of the ## Weibull distribution with shape parameter @var{alpha} and scale ## parameter @var{sigma} which is given by ## ## @example ## alpha * sigma^(-alpha) * x^(alpha-1) * exp(-(x/sigma)^alpha) ## @end example ## ## @noindent ## for @var{x} > 0. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the Weibull distribution function pdf = weibpdf (x, shape, scale) if (nargin != 3) usage ("weibpdf (x, alpha, sigma)"); endif if (!isscalar (shape) || !isscalar (scale)) [retval, x, shape, scale] = common_size (x, shape, scale); if (retval > 0) error ("weibpdf: x, alpha and sigma must be of common size or scalar"); endif endif pdf = NaN * ones (size (x)); ok = ((shape > 0) & (shape < Inf) & (scale > 0) & (scale < Inf)); k = find ((x > -Inf) & (x <= 0) & ok); if (any (k)) pdf(k) = 0; endif k = find ((x > 0) & (x < Inf) & ok); if (any (k)) if (isscalar (shape) && isscalar (scale)) pdf(k) = (shape .* (scale .^ -shape) .* (x(k) .^ (shape - 1)) .* exp(- (x(k) / scale) .^ shape)); else pdf(k) = (shape(k) .* (scale(k) .^ -shape(k)) .* (x(k) .^ (shape(k) - 1)) .* exp(- (x(k) ./ scale(k)) .^ shape(k))); endif endif endfunction