Mercurial > hg > octave-lyh
view scripts/control/base/rlocus.m @ 11640:6c36c5d3c38b release-3-0-x
fix workspace size calculation for xGELSD
author | Jason Riedy |
---|---|
date | Tue, 12 Feb 2008 21:04:34 -0500 |
parents | 4a375de63f66 |
children |
line wrap: on
line source
## Copyright (C) 1996, 2000, 2004, 2005, 2006, 2007 ## Auburn University. All rights reserved. ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{rldata}, @var{k}] =} rlocus (@var{sys}[, @var{increment}, @var{min_k}, @var{max_k}]) ## ## Display root locus plot of the specified @acronym{SISO} system. ## @example ## @group ## ----- --- -------- ## --->| + |---|k|---->| SISO |-----------> ## ----- --- -------- | ## - ^ | ## |_____________________________| ## @end group ## @end example ## ## @strong{Inputs} ## @table @var ## @item sys ## system data structure ## @item min_k ## Minimum value of @var{k} ## @item max_k ## Maximum value of @var{k} ## @item increment ## The increment used in computing gain values ## @end table ## ## @strong{Outputs} ## ## Plots the root locus to the screen. ## @table @var ## @item rldata ## Data points plotted: in column 1 real values, in column 2 the imaginary values. ## @item k ## Gains for real axis break points. ## @end table ## @end deftypefn ## Author: David Clem ## Author: R. Bruce Tenison <btenison@eng.auburn.edu> ## Updated by Kristi McGowan July 1996 for intelligent gain selection ## Updated by John Ingram July 1996 for systems function [rldata, k_break, rlpol, gvec, real_ax_pts] = rlocus (sys, increment, min_k, max_k) if (nargin < 1 || nargin > 4) print_usage (); endif ## Convert the input to a transfer function if necessary [num, den] = sys2tf (sys); # extract numerator/denom polyomials lnum = length (num); lden = length (den); ## equalize length of num, den polynomials if (lden < 2) error ("system has no poles"); elseif (lnum < lden) num = [zeros(1,lden-lnum), num]; # so that derivative is shortened by one endif olpol = roots (den); olzer = roots (num); nas = lden - lnum; # number of asymptotes maxk = 0; if (nas > 0) cas = (sum (olpol) - sum (olzer)) / nas; angles = (2*[1:nas]-1)*pi/nas; # printf("rlocus: there are %d asymptotes centered at %f\n", nas, cas); else cas = angles = []; maxk = 100*den(1)/num(1); endif # compute real axis break points and corresponding gains dnum = polyderiv (num); dden = polyderiv (den); brkp = conv (den, dnum) - conv (num, dden); real_ax_pts = roots (brkp); real_ax_pts = real_ax_pts(find (imag (real_ax_pts) == 0)); k_break = -polyval (den, real_ax_pts) ./ polyval (num, real_ax_pts); idx = find (k_break >= 0); k_break = k_break(idx); real_ax_pts = real_ax_pts(idx); if (! isempty (k_break)) maxk = max (max (k_break), maxk); endif if (nas == 0) maxk = max (1, 2*maxk); # get at least some root locus else ## get distance from breakpoints, poles, and zeros to center of asymptotes dmax = 3*max (abs ([vec(olzer); vec(olpol); vec(real_ax_pts)] - cas)); if (dmax == 0) dmax = 1; endif # get gain for dmax along each asymptote, adjust maxk if necessary svals = cas + dmax * exp (j*angles); kvals = -polyval (den, svals) ./ polyval (num, svals); maxk = max (maxk, max (real (kvals))); endif ## check for input arguments: if (nargin > 2) mink = min_k; else mink = 0; endif if (nargin > 3) maxk = max_k; endif if (nargin > 1) if (increment <= 0) error ("increment must be positive"); else ngain = (maxk-mink)/increment; endif else ngain = 30; endif ## vector of gains ngain = max (30, ngain); gvec = linspace (mink, maxk, ngain); if (length (k_break)) gvec = sort ([gvec, vec(k_break)']); endif ## Find the open loop zeros and the initial poles rlzer = roots (num); ## update num to be the same length as den lnum = length (num); if (lnum < lden) num = [zeros(1,lden - lnum),num]; endif ## compute preliminary pole sets nroots = lden - 1; for ii = 1:ngain gain = gvec(ii); rlpol(1:nroots,ii) = vec(sortcom (roots (den + gain*num))); endfor ## set smoothing tolerance smtolx = 0.01*(max (max (real (rlpol))) - min (min (real (rlpol)))); smtoly = 0.01*(max (max (imag (rlpol))) - min (min (imag (rlpol)))); smtol = max (smtolx, smtoly); ## sort according to nearest-neighbor rlpol = sort_roots (rlpol, smtolx, smtoly); done = (nargin == 4); # perform a smoothness check while (! done && ngain < 1000) done = 1 ; # assume done dp = abs (diff (rlpol'))'; maxdp = max (dp); ## search for poles whose neighbors are distant if (lden == 2) idx = find (dp > smtol); else idx = find (maxdp > smtol); endif for ii = 1:length(idx) i1 = idx(ii); g1 = gvec(i1); p1 = rlpol(:,i1); i2 = idx(ii)+1; g2 = gvec(i2); p2 = rlpol(:,i2); ## isolate poles in p1, p2 if (max (abs (p2-p1)) > smtol) newg = linspace (g1, g2, 5); newg = newg(2:4); gvec = [gvec,newg]; done = 0; # need to process new gains endif endfor ## process new gain values ngain1 = length (gvec); for ii = (ngain+1):ngain1 gain = gvec(ii); rlpol(1:nroots,ii) = vec(sortcom (roots (den + gain*num))); endfor [gvec, idx] = sort (gvec); rlpol = rlpol(:,idx); ngain = length (gvec); ## sort according to nearest-neighbor rlpol = sort_roots (rlpol, smtolx, smtoly); endwhile rldata = rlpol; ## Plot the data if (nargout == 0) rlpolv = vec(rlpol); axdata = [real(rlpolv), imag(rlpolv); real(olzer), imag(olzer)]; axlim = axis2dlim (axdata); rldata = [real(rlpolv), imag(rlpolv) ]; [stn, inname, outname] = sysgetsignals (sys); ## build plot command args pole by pole n_rlpol = rows (rlpol); nelts = n_rlpol+1; if (! isempty (rlzer)) nelts++; endif # add asymptotes n_A = length (olpol) - length (olzer); if (n_A > 0) nelts += n_A; endif args = cell (3, nelts); kk = 0; # asymptotes first if (n_A > 0) len_A = 2*max (abs (axlim)); sigma_A = (sum(olpol) - sum(olzer))/n_A; for i_A=0:n_A-1 phi_A = pi*(2*i_A + 1)/n_A; args{1,++kk} = [sigma_A sigma_A+len_A*cos(phi_A)]; args{2,kk} = [0 len_A*sin(phi_A)]; if (i_A == 1) args{3,kk} = "k--;asymptotes;"; else args{3,kk} = "k--"; endif endfor endif # locus next for ii = 1:rows(rlpol) args{1,++kk} = real (rlpol (ii,:)); args{2,kk} = imag (rlpol (ii,:)); if (ii == 1) args{3,kk} = "b-;locus;"; else args{3,kk} = "b-"; endif endfor # poles and zeros last args{1,++kk} = real (olpol); args{2,kk} = imag (olpol); args{3,kk} = "rx;open loop poles;"; if (! isempty (rlzer)) args{1,++kk} = real (rlzer); args{2,kk} = imag (rlzer); args{3,kk} = "go;zeros;"; endif set (gcf,"visible","off"); hplt = plot (args{:}); set (hplt(kk--), "markersize", 2); if (! isempty (rlzer)) set (hplt(kk--), "markersize", 2); endif for ii = 1:rows(rlpol) set (hplt(kk--), "linewidth", 2); endfor legend ("boxon", 2); grid ("on"); axis (axlim); xlabel (sprintf ("Root locus from %s to %s, gain=[%f,%f]: Real axis", inname{1}, outname{1}, gvec(1), gvec(ngain))); ylabel ("Imag. axis"); set (gcf (), "visible","on"); rldata = []; endif endfunction function rlpol = sort_roots (rlpol,tolx, toly) # no point sorting of you've only got one pole! if (rows (rlpol) == 1) return; endif # reorder entries in each column of rlpol to be by their nearest-neighbors dp = diff (rlpol')'; drp = max (real (dp)); dip = max (imag (dp)); idx = find (drp > tolx | dip > toly); if (isempty (idx)) return; endif [np, ng] = size (rlpol); # num poles, num gains for jj = idx vals = rlpol(:,[jj,jj+1]); jdx = (jj+1):ng; for ii = 1:rows(rlpol-1) rdx = ii:np; dval = abs (rlpol(rdx,jj+1)-rlpol(ii,jj)); mindist = min (dval); sidx = min (find (dval == mindist)) + ii - 1; if (sidx != ii) c1 = norm (diff(vals')); [vals(ii,2), vals(sidx,2)] = swap (vals(ii,2), vals(sidx,2)); c2 = norm (diff (vals')); if (c1 > c2) ## perform the swap [rlpol(ii,jdx), rlpol(sidx,jdx)] = swap (rlpol(ii,jdx), rlpol(sidx,jdx)); vals = rlpol(:,[jj,jj+1]); endif endif endfor endfor endfunction