Mercurial > hg > octave-lyh
view scripts/sparse/sprandsym.m @ 13123:6efa1a691713
Add further tests for scripts/plot.
plot/close.m: Tests added.
plot/gca.m, plot/gcbf.m, plot/gcbo.m, plot/hggroup.m, plot/isfigure.m: Ditto.
plot/gtext.m, plot/ginput.m: Dummy test added.
author | Kai Habel <kai.habel@gmx.de> |
---|---|
date | Sun, 11 Sep 2011 18:24:58 +0200 |
parents | bae887ebea48 |
children | abf1e00111dd |
line wrap: on
line source
## Copyright (C) 2004-2011 David Bateman and Andy Adler ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} sprandsym (@var{n}, @var{d}) ## @deftypefnx {Function File} {} sprandsym (@var{s}) ## Generate a symmetric random sparse matrix. The size of the matrix will be ## @var{n} by @var{n}, with a density of values given by @var{d}. ## @var{d} should be between 0 and 1. Values will be normally ## distributed with mean of zero and variance 1. ## ## Note: sometimes the actual density may be a bit smaller than @var{d}. ## This is unlikely to happen for large really sparse matrices. ## ## If called with a single matrix argument, a random sparse matrix is ## generated wherever the matrix @var{S} is non-zero in its lower ## triangular part. ## @seealso{sprand, sprandn} ## @end deftypefn function S = sprandsym (n, d) if (nargin != 1 && nargin != 2) print_usage (); endif if (nargin == 1) [i, j] = find (tril (n)); [nr, nc] = size (n); S = sparse (i, j, randn (size (i)), nr, nc); S = S + tril (S, -1)'; return; endif if (!(isscalar (n) && n == fix (n) && n > 0)) error ("sprand: N must be an integer greater than 0"); endif if (d < 0 || d > 1) error ("sprand: density D must be between 0 and 1"); endif m1 = floor (n/2); n1 = m1 + rem (n, 2); mn1 = m1*n1; k1 = round (d*mn1); idx1 = unique (fix (rand (min (k1*1.01, k1+10), 1) * mn1)) + 1; ## idx contains random numbers in [1,mn] generate 1% or 10 more ## random values than necessary in order to reduce the probability ## that there are less than k distinct values; maybe a better ## strategy could be used but I don't think it's worth the price. ## Actual number of entries in S. k1 = min (length (idx1), k1); j1 = floor ((idx1(1:k1)-1)/m1); i1 = idx1(1:k1) - j1*m1; n2 = ceil (n/2); nn2 = n2*n2; k2 = round (d*nn2); idx2 = unique (fix (rand (min (k2*1.01, k1+10), 1) * nn2)) + 1; k2 = min (length (idx2), k2); j2 = floor ((idx2(1:k2)-1)/n2); i2 = idx2(1:k2) - j2*n2; if (isempty (i1) && isempty (i2)) S = sparse (n, n); else S1 = sparse (i1, j1+1, randn (k1, 1), m1, n1); S = [tril(S1), sparse(m1,m1); ... sparse(i2,j2+1,randn(k2,1),n2,n2), triu(S1,1)']; S = S + tril (S, -1)'; endif endfunction ## FIXME: Test for density can't happen until code of sprandsym is improved %!test %! s = sprandsym (10, 0.1); %! assert (issparse (s)); %! assert (issymmetric (s)); %! assert (size (s), [10, 10]); ##%! assert (nnz (s) / numel (s), 0.1, .01); %% Test 1-input calling form %!test %! s = sprandsym (sparse ([1 2 3], [3 2 3], [2 2 2])); %! [i, j] = find (s); %! assert (sort (i), [2 3]'); %! assert (sort (j), [2 3]'); %% Test input validation %!error sprandsym () %!error sprandsym (1, 2, 3) %!error sprandsym (ones(3), 0.5) %!error sprandsym (3.5, 0.5) %!error sprandsym (0, 0.5) %!error sprandsym (3, -1) %!error sprandsym (3, 2)