Mercurial > hg > octave-lyh
view scripts/statistics/distributions/betainv.m @ 14138:72c96de7a403 stable
maint: update copyright notices for 2012
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Mon, 02 Jan 2012 14:25:41 -0500 |
parents | 19b9f17d22af |
children | f3d52523cde1 |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} betainv (@var{x}, @var{a}, @var{b}) ## For each element of @var{x}, compute the quantile (the inverse of ## the CDF) at @var{x} of the Beta distribution with parameters @var{a} ## and @var{b}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the Beta distribution function inv = betainv (x, a, b) if (nargin != 3) print_usage (); endif if (!isscalar (a) || !isscalar (b)) [retval, x, a, b] = common_size (x, a, b); if (retval > 0) error ("betainv: X, A, and B must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (a) || iscomplex (b)) error ("betainv: X, A, and B must not be complex"); endif if (isa (x, "single") || isa (a, "single") || isa (b, "single")) inv = zeros (size (x), "single"); else inv = zeros (size (x)); endif k = (x < 0) | (x > 1) | !(a > 0) | !(b > 0) | isnan (x); inv(k) = NaN; k = (x == 1) & (a > 0) & (b > 0); inv(k) = 1; k = find ((x > 0) & (x < 1) & (a > 0) & (b > 0)); if (any (k)) if (!isscalar (a) || !isscalar (b)) a = a(k); b = b(k); y = a ./ (a + b); else y = a / (a + b) * ones (size (k)); endif x = x(k); if (isa (y, "single")) myeps = eps ("single"); else myeps = eps; endif l = find (y < myeps); if (any (l)) y(l) = sqrt (myeps) * ones (length (l), 1); endif l = find (y > 1 - myeps); if (any (l)) y(l) = 1 - sqrt (myeps) * ones (length (l), 1); endif y_old = y; for i = 1 : 10000 h = (betacdf (y_old, a, b) - x) ./ betapdf (y_old, a, b); y_new = y_old - h; ind = find (y_new <= myeps); if (any (ind)) y_new (ind) = y_old (ind) / 10; endif ind = find (y_new >= 1 - myeps); if (any (ind)) y_new (ind) = 1 - (1 - y_old (ind)) / 10; endif h = y_old - y_new; if (max (abs (h)) < sqrt (myeps)) break; endif y_old = y_new; endfor inv(k) = y_new; endif endfunction %!shared x %! x = [-1 0 0.75 1 2]; %!assert(betainv (x, ones(1,5), 2*ones(1,5)), [NaN 0 0.5 1 NaN]); %!assert(betainv (x, 1, 2*ones(1,5)), [NaN 0 0.5 1 NaN]); %!assert(betainv (x, ones(1,5), 2), [NaN 0 0.5 1 NaN]); %!assert(betainv (x, [1 0 NaN 1 1], 2), [NaN NaN NaN 1 NaN]); %!assert(betainv (x, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN 1 NaN]); %!assert(betainv ([x(1:2) NaN x(4:5)], 1, 2), [NaN 0 NaN 1 NaN]); %% Test class of input preserved %!assert(betainv ([x, NaN], 1, 2), [NaN 0 0.5 1 NaN NaN]); %!assert(betainv (single([x, NaN]), 1, 2), single([NaN 0 0.5 1 NaN NaN])); %!assert(betainv ([x, NaN], single(1), 2), single([NaN 0 0.5 1 NaN NaN])); %!assert(betainv ([x, NaN], 1, single(2)), single([NaN 0 0.5 1 NaN NaN])); %% Test input validation %!error betainv () %!error betainv (1) %!error betainv (1,2) %!error betainv (1,2,3,4) %!error betainv (ones(3),ones(2),ones(2)) %!error betainv (ones(2),ones(3),ones(2)) %!error betainv (ones(2),ones(2),ones(3)) %!error betainv (i, 2, 2) %!error betainv (2, i, 2) %!error betainv (2, 2, i)