Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/kron.cc @ 3910:79a90a0f0eff
[project @ 2002-04-25 05:36:52 by jwe]
author | jwe |
---|---|
date | Thu, 25 Apr 2002 05:36:53 +0000 |
parents | |
children | 8389e78e67d4 |
line wrap: on
line source
/* Copyright (C) 2002 Paul Kienzle This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "dMatrix.h" #include "CMatrix.h" #include "defun-dld.h" #include "error.h" #include "oct-obj.h" #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern void kron (const Array2<double>&, const Array2<double>&, Array2<double>&); extern void kron (const Array2<Complex>&, const Array2<Complex>&, Array2<Complex>&); #endif template <class T> void kron (const Array2<T>& A, const Array2<T>& B, Array2<T>& C) { C.resize (A.rows () * B.rows (), A.columns () * B.columns ()); int Ac, Ar, Cc, Cr; for (Ac = Cc = 0; Ac < A.columns (); Ac++, Cc += B.columns ()) for (Ar = Cr = 0; Ar < A.rows (); Ar++, Cr += B.rows ()) { const T v = A (Ar, Ac); for (int Bc = 0; Bc < B.columns (); Bc++) for (int Br = 0; Br < B.rows (); Br++) C.xelem (Cr+Br, Cc+Bc) = v * B.elem (Br, Bc); } } template void kron (const Array2<double>&, const Array2<double>&, Array2<double>&); template void kron (const Array2<Complex>&, const Array2<Complex>&, Array2<Complex>&); DEFUN_DLD (kron, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Function File} {} kron (@var{a}, @var{b})\n\ Form the kronecker product of two matrices, defined block by block as\n\ \n\ @example\n\ x = [a(i, j) b]\n\ @end example\n\ \n\ For example,\n\ \n\ @example\n\ @group\n\ kron (1:4, ones (3, 1))\n\ @result{} 1 2 3 4\n\ 1 2 3 4\n\ 1 2 3 4\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 2 || nargout > 1) { print_usage ("kron"); } else if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexMatrix a (args(0).complex_matrix_value()); ComplexMatrix b (args(1).complex_matrix_value()); if (! error_state) { ComplexMatrix c; kron (a, b, c); retval(0) = c; } } else { Matrix a (args(0).matrix_value ()); Matrix b (args(1).matrix_value ()); if (! error_state) { Matrix c; kron (a, b, c); retval (0) = c; } } return retval; }