Mercurial > hg > octave-lyh
view scripts/special-matrix/pascal.m @ 17499:7c14949789ab
Fully single type support & clean the code
author | LYH <lyh.kernel@gmail.com> |
---|---|
date | Thu, 26 Sep 2013 04:37:36 +0800 |
parents | 72c96de7a403 |
children |
line wrap: on
line source
## Copyright (C) 1999-2012 Peter Ekberg ## Copyright (C) 2009 VZLU Prague ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} pascal (@var{n}) ## @deftypefnx {Function File} {} pascal (@var{n}, @var{t}) ## Return the Pascal matrix of order @var{n} if @code{@var{t} = 0}. @var{t} ## defaults to 0. Return the pseudo-lower triangular Cholesky@tie{}factor of ## the Pascal matrix if @code{@var{t} = 1} (The sign of some columns may be ## negative). This matrix is its own inverse, that is @code{pascal (@var{n}, ## 1) ^ 2 == eye (@var{n})}. If @code{@var{t} = -1}, return the true ## Cholesky@tie{}factor with strictly positive values on the diagonal. If ## @code{@var{t} = 2}, return a transposed and permuted version of @code{pascal ## (@var{n}, 1)}, which is the cube root of the identity matrix. That is, ## @code{pascal (@var{n}, 2) ^ 3 == eye (@var{n})}. ## ## @seealso{chol} ## @end deftypefn ## Author: Peter Ekberg ## (peda) function retval = pascal (n, t = 0) if (nargin < 1 || nargin > 2) print_usage (); elseif (! (isscalar (n) && isscalar (t))) error ("pascal: N and T must be scalars"); elseif (! any (t == [-1, 0, 1, 2])) error ("pascal: expecting T to be -1, 0, 1, or 2, found %d", t); endif retval = zeros (n); if (n > 0) retval(:,1) = 1; endif if (t == -1) for j = 2:n retval(j:n,j) = cumsum (retval(j-1:n-1,j-1)); endfor else for j = 2:n retval(j:n,j) = -cumsum (retval(j-1:n-1,j-1)); endfor endif if (t == 0) retval = retval*retval'; elseif (t == 2) retval = rot90 (retval, 3); if (rem (n,2) != 1) retval *= -1; endif endif endfunction %!assert (pascal (3,-1), [1,0,0;1,1,0;1,2,1]) %!assert (pascal (3,0), [1,1,1;1,2,3;1,3,6]) %!assert (pascal (3,0), pascal (3)) %!assert (pascal (3,1), [1,0,0;1,-1,0;1,-2,1]) %!assert (pascal (3,2), [1,1,1;-2,-1,0;1,0,0]) %!assert (pascal (0,2), []) %% Test input validation %!error pascal () %!error pascal (1,2,3) %!error <N and T must be scalars> pascal ([1 2]) %!error <N and T must be scalars> pascal (1, [1 2]) %!error <expecting T to be> pascal (3,-2) %!error <expecting T to be> pascal (3,4)