Mercurial > hg > octave-lyh
view src/balance.cc @ 2465:7ee42ff6536a
[project @ 1996-11-03 08:54:14 by jwe]
author | jwe |
---|---|
date | Sun, 03 Nov 1996 08:54:22 +0000 |
parents | 5c9e8f5c10c3 |
children | 8b262e771614 |
line wrap: on
line source
/* Copyright (C) 1996 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // Written by A. S. Hodel <scotte@eng.auburn.edu> #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <string> #include "CmplxAEPBAL.h" #include "CmplxAEPBAL.h" #include "dbleAEPBAL.h" #include "dbleAEPBAL.h" #include "dbleGEPBAL.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "help.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (balance, args, nargout, "AA = balance (A [, OPT]) or [[DD,] AA] = balance (A [, OPT])\n\ \n\ generalized eigenvalue problem:\n\ \n\ [cc, dd, aa, bb] = balance (a, b [, opt])\n\ \n\ where OPT is an optional single character argument as follows: \n\ \n\ N: no balancing; arguments copied, transformation(s) set to identity\n\ P: permute argument(s) to isolate eigenvalues where possible\n\ S: scale to improve accuracy of computed eigenvalues\n\ B: (default) permute and scale, in that order. Rows/columns\n\ of a (and b) that are isolated by permutation are not scaled\n\ \n\ [DD, AA] = balance (A, OPT) returns aa = dd*a*dd,\n\ \n\ [CC, DD, AA, BB] = balance (A, B, OPT) returns AA (BB) = CC*A*DD (CC*B*DD)") { octave_value_list retval; int nargin = args.length (); if (nargin < 1 || nargin > 3 || nargout < 0 || nargout > 4) { print_usage ("balance"); return retval; } string bal_job; int my_nargin; // # args w/o optional string arg // Determine if balancing option is listed. Set my_nargin to the // number of matrix inputs. if (args(nargin-1).is_string ()) { bal_job = args(nargin-1).string_value (); my_nargin = nargin-1; } else { bal_job = "B"; my_nargin = nargin; } octave_value arg_a = args(0); int a_nr = arg_a.rows (); int a_nc = arg_a.columns (); // Check argument 1 dimensions. int arg_is_empty = empty_arg ("balance", a_nr, a_nc); if (arg_is_empty < 0) return retval; if (arg_is_empty > 0) return octave_value_list (2, Matrix ()); if (a_nr != a_nc) { gripe_square_matrix_required ("balance"); return retval; } // Extract argument 1 parameter for both AEP and GEP. Matrix aa; ComplexMatrix caa; if (arg_a.is_complex_type ()) caa = arg_a.complex_matrix_value (); else aa = arg_a.matrix_value (); if (error_state) return retval; // Treat AEP/GEP cases. switch (my_nargin) { case 1: // Algebraic eigenvalue problem. if (arg_a.is_complex_type ()) { ComplexAEPBALANCE result (caa, bal_job); if (nargout == 0 || nargout == 1) retval(0) = result.balanced_matrix (); else { retval(1) = result.balanced_matrix (); retval(0) = result.balancing_matrix (); } } else { AEPBALANCE result (aa, bal_job); if (nargout == 0 || nargout == 1) retval(0) = result.balanced_matrix (); else { retval(1) = result.balanced_matrix (); retval(0) = result.balancing_matrix (); } } break; case 2: { // Generalized eigenvalue problem. // 1st we have to check argument 2 dimensions and type... octave_value arg_b = args(1); int b_nr = arg_b.rows (); int b_nc = arg_b.columns (); // Check argument 2 dimensions -- must match arg 1. if (b_nr != b_nc || b_nr != a_nr) { gripe_nonconformant (); return retval; } // Now, extract the second matrix... // Extract argument 1 parameter for both AEP and GEP. Matrix bb; ComplexMatrix cbb; if (arg_b.is_complex_type ()) cbb = arg_b.complex_matrix_value (); else bb = arg_b.matrix_value (); if (error_state) return retval; // Both matrices loaded, now let's check what kind of arithmetic: if (arg_a.is_complex_type () || arg_b.is_complex_type ()) { if (arg_a.is_real_type ()) caa = aa; if (arg_b.is_real_type ()) cbb = bb; // Compute magnitudes of elements for balancing purposes. // Surely there's a function I can call someplace! for (int i = 0; i < a_nr; i++) for (int j = 0; j < a_nc; j++) { aa (i, j) = abs (caa (i, j)); bb (i, j) = abs (cbb (i, j)); } } GEPBALANCE result (aa, bb, bal_job); if (arg_a.is_complex_type () || arg_b.is_complex_type ()) { caa = result.left_balancing_matrix () * caa * result.right_balancing_matrix (); cbb = result.left_balancing_matrix () * cbb * result.right_balancing_matrix (); switch (nargout) { case 0: case 1: warning ("balance: should use two output arguments"); retval(0) = caa; break; case 2: retval(1) = cbb; retval(0) = caa; break; case 4: retval(3) = cbb; retval(2) = caa; retval(1) = result.right_balancing_matrix (); retval(0) = result.left_balancing_matrix (); break; default: error ("balance: invalid number of output arguments"); break; } } else { switch (nargout) { case 0: case 1: warning ("balance: should use two output arguments"); retval(0) = result.balanced_a_matrix (); break; case 2: retval(1) = result.balanced_b_matrix (); retval(0) = result.balanced_a_matrix (); break; case 4: retval(3) = result.balanced_b_matrix (); retval(2) = result.balanced_a_matrix (); retval(1) = result.right_balancing_matrix (); retval(0) = result.left_balancing_matrix (); break; default: error ("balance: invalid number of output arguments"); break; } } } break; default: error ("balance requires one (AEP) or two (GEP) numeric arguments"); break; } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */