Mercurial > hg > octave-lyh
view src/syl.cc @ 46:80ea39e3c917
[project @ 1993-08-10 22:58:17 by jwe]
author | jwe |
---|---|
date | Tue, 10 Aug 1993 22:58:49 +0000 |
parents | e399beacf758 |
children | ed620db95182 |
line wrap: on
line source
// tc-syl.cc -*- C++ -*- /* Copyright (C) 1993 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ // Written by A. S. Hodel <scotte@eng.auburn.edu> #ifdef __GNUG__ #pragma implementation #endif #include "Matrix.h" #include "tree-const.h" #include "user-prefs.h" #include "gripes.h" #include "error.h" int F77_FCN (dtrsyl) (const char*, const char*, const int*, const int*, const int*, const double*, const int*, const double*, const int*, const double*, const int*, double*, int*, long, long); int F77_FCN (ztrsyl) (const char*, const char*, const int*, const int*, const int*, const Complex*, const int*, const Complex*, const int*, const Complex*, const int*, double*, int*, long, long); // Local function: check for empty matrix arguments. Probably should make // this available elsewhere, since tc-xxx functions do this a lot. static inline int empty_arg (tree_constant& arg) { return (arg.rows () == 0 || arg.columns () == 0); } // Local function: construct return vector of empty matrices. Return // empty matrices and/or gripe when appropriate. Probably should make // this available elsewhere, since tc-xxx functions do this a lot. tree_constant * empty_tree (int nargout, char* fcn_name) { tree_constant *retval = NULL_TREE_CONST; // Got an empty argument, check if should gripe/return empty values. int flag = user_pref.propagate_empty_matrices; if (flag != 0) { if (flag < 0) gripe_empty_arg (fcn_name, 0); Matrix m; retval = new tree_constant [nargout+1]; for (int i = 0; i < nargout; i++) retval[i] = tree_constant (m); } else gripe_empty_arg (fcn_name, 1); return retval; } // Return value of tree_constant argument as ComplexMatrix. ComplexMatrix ComplexMatrixLoad (tree_constant& arg) { ComplexMatrix retval; // Set argument size for scalar (for later). switch (arg.const_type ()) { case tree_constant_rep::scalar_constant: retval.resize (1, 1); { double real_val = arg.double_value (); retval.elem (0, 0) = real_val; } break; case tree_constant_rep::complex_scalar_constant: retval.resize (1, 1); retval.elem (0, 0) = arg.complex_value (); break; case tree_constant_rep::matrix_constant: { Matrix tmp = arg.matrix_value (); retval = tmp; } break; case tree_constant_rep::complex_matrix_constant: retval = arg.complex_matrix_value (); break; default: panic_impossible (); break; } return retval; } #ifdef WITH_DLD tree_constant * builtin_syl_2 (tree_constant *args, int nargin, int nargout) { return syl (args, nargin, nargout); } #endif tree_constant * syl (tree_constant *args, int nargin, int nargout) { tree_constant *retval = NULL_TREE_CONST; tree_constant arga = args[1].make_numeric (); tree_constant argb = args[2].make_numeric (); tree_constant argc = args[3].make_numeric (); if (empty_arg (arga) || empty_arg (argb) || empty_arg (argc)) retval = empty_tree (nargout, "syl"); else { // Arguments are not empty, so check for correct dimensions. int a_rows = arga.rows (); int a_cols = arga.columns (); int b_rows = argb.rows (); int b_cols = argb.columns (); int c_rows = argc.rows (); int c_cols = argc.columns (); if ((a_rows != a_cols) || (b_rows != b_cols)) { gripe_square_matrix_required ("syl: first two parameters:"); return retval; } else if ((a_rows != c_rows) || (b_rows != c_cols)) { gripe_nonconformant (); return retval; } // Dimensions look o.k., let's solve the problem. retval = new tree_constant[nargout+1]; if (arga.is_complex_type () || argb.is_complex_type () || argc.is_complex_type ()) { // Do everything in complex arithmetic; ComplexMatrix ca = ComplexMatrixLoad (arga); ComplexMatrix cb = ComplexMatrixLoad (argb); ComplexMatrix cc = ComplexMatrixLoad (argc); // Compute Schur decompositions ComplexSCHUR as (ca, "U"); ComplexSCHUR bs (cb, "U"); // Transform cc to new coordinates. ComplexMatrix ua = as.unitary_matrix (); ComplexMatrix sch_a = as.schur_matrix (); ComplexMatrix ub = bs.unitary_matrix (); ComplexMatrix sch_b = bs.schur_matrix (); ComplexMatrix cx = ua.hermitian () * cc * ub; // Solve the sylvester equation, back-transform, and return the solution. double scale; int info; int one = 1; F77_FCN (ztrsyl) ("N", "N", &one, &a_rows, &b_rows, sch_a.fortran_vec (), &a_rows, sch_b.fortran_vec (), &b_rows, cx.fortran_vec (), &a_rows, &scale, &info, 1L, 1L); cx = -ua * cx * ub.hermitian (); retval[0] = tree_constant (cx); } else { // Do everything in real arithmetic; Matrix ca = arga.to_matrix (); Matrix cb = argb.to_matrix (); Matrix cc = argc.to_matrix (); // Compute Schur decompositions. SCHUR as (ca, "U"); SCHUR bs (cb, "U"); // Transform cc to new coordinates. Matrix ua = as.unitary_matrix (); Matrix sch_a = as.schur_matrix (); Matrix ub = bs.unitary_matrix (); Matrix sch_b = bs.schur_matrix (); Matrix cx = ua.transpose () * cc * ub; // Solve the sylvester equation, back-transform, and return the solution. double scale; int info; int one = 1; F77_FCN (dtrsyl) ("N", "N", &one, &a_rows, &b_rows, sch_a.fortran_vec (), &a_rows, sch_b.fortran_vec (), &b_rows, cx.fortran_vec (), &a_rows, &scale, &info, 1L, 1L); if (info) error ("syl: trouble in dtrsyl info = %d", info); cx = -ua*cx*ub.transpose (); retval[0] = tree_constant (cx); } } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; page-delimiter: "^/\\*" *** ;;; End: *** */