Mercurial > hg > octave-lyh
view scripts/polynomial/roots.m @ 7411:83a8781b529d
[project @ 2008-01-22 21:52:25 by jwe]
author | jwe |
---|---|
date | Tue, 22 Jan 2008 21:52:26 +0000 |
parents | a1dbe9d80eee |
children | 690c91f741b8 |
line wrap: on
line source
## Copyright (C) 1994, 1995, 1996, 1997, 1999, 2000, 2004, 2005, 2006, ## 2007 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} roots (@var{v}) ## ## For a vector @var{v} with @math{N} components, return ## the roots of the polynomial ## @iftex ## @tex ## $$ ## v_1 z^{N-1} + \cdots + v_{N-1} z + v_N. ## $$ ## @end tex ## @end iftex ## @ifnottex ## ## @example ## v(1) * z^(N-1) + ... + v(N-1) * z + v(N) ## @end example ## @end ifnottex ## ## As an example, the following code finds the roots of the quadratic ## polynomial ## @iftex ## @tex ## $$ p(x) = x^2 - 5. $$ ## @end tex ## @end iftex ## @ifnottex ## @example ## p(x) = x^2 - 5. ## @end example ## @end ifnottex ## @example ## c = [1, 0, -5]; ## roots(c) ## @result{} 2.2361 ## @result{} -2.2361 ## @end example ## Note that the true result is ## @iftex ## @tex ## $\pm \sqrt{5}$ ## @end tex ## @end iftex ## @ifnottex ## @math{+/- sqrt(5)} ## @end ifnottex ## which is roughly ## @iftex ## @tex ## $\pm 2.2361$. ## @end tex ## @end iftex ## @ifnottex ## @math{+/- 2.2361}. ## @end ifnottex ## @seealso{compan} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Created: 24 December 1993 ## Adapted-By: jwe function r = roots (v) if (nargin != 1 || min (size (v)) > 1) print_usage (); endif n = length (v); v = reshape (v, 1, n); ## If v = [ 0 ... 0 v(k+1) ... v(k+l) 0 ... 0 ], we can remove the ## leading k zeros and n - k - l roots of the polynomial are zero. f = find (v); m = max (size (f)); if (m > 0 && n > 1) v = v(f(1):f(m)); l = max (size (v)); if (l > 1) A = diag (ones (1, l-2), -1); A(1,:) = -v(2:l) ./ v(1); r = eig (A); if (f(m) < n) tmp = zeros (n - f(m), 1); r = [r; tmp]; endif else r = zeros (n - f(m), 1); endif else r = []; endif endfunction %!assert(all (all (abs (roots ([1, -6, 11, -6]) - [3; 2; 1]) < sqrt (eps)))); %!assert(isempty (roots ([]))); %!error roots ([1, 2; 3, 4]);