Mercurial > hg > octave-lyh
view scripts/signal/diffpara.m @ 3449:858695b3ed62
[project @ 2000-01-18 04:08:59 by jwe]
author | jwe |
---|---|
date | Tue, 18 Jan 2000 04:09:14 +0000 |
parents | f8dde1807dee |
children | e031284eea27 |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997 Friedrich Leisch ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2, or (at your option) ## any later version. ## ## This program is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this file. If not, write to the Free Software Foundation, ## 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{d}, @var{D}]} = diffpara (@var{x}, @var{a}, @var{b}) ## Return the estimator @var{d} for the differencing parameter of an ## integrated time series. ## ## The frequencies from @code{[2*pi*@var{a}/@var{T}, ## 2*pi*@var{b}/@var{T}]} are used for the estimation. If @var{b} is ## omitted, the interval @code{[2*pi/@var{T}, 2*pi*@var{a}/@var{T}]} is ## used. If both @var{b} and @var{a} are omitted then @code{@var{a} = ## 0.5 * sqrt(@var{T})} and @code{@var{b} = 1.5 * sqrt(@var{T})} is ## used, where @var{T} is the sample size. If @var{x} is a matrix, the ## differencing parameter of each column is estimated. ## ## The estimators for all frequencies in the intervals ## described above is returned in @var{D}. The value of @var{d} is ## simply the mean of @var{D}. ## ## Reference: Brockwell, Peter J. & Davis, Richard A. Time Series: ## Theory and Methods Springer 1987. ## @end deftypefn ## Author: FL <Friedrich.Leisch@ci.tuwien.ac.at> ## Description: Estimate the fractional differencing parameter function [d, D] = diffpara (X, a, b) if ((nargin < 1) || (nargin > 3)) usage ("[d, D] = diffpara (X, a, b)"); else if is_vector (X) n = length (X); k = 1; X = reshape (X, n, 1); else [n, k] = size(X); endif if (nargin == 1) a = 0.5 * sqrt (n); b = 1.5 * sqrt (n); elseif (nargin == 2) b = a; a = 1; endif endif if !(is_scalar (a) && is_scalar (b)) error ("diffpara: a and b must be scalars"); endif D = zeros (b - a + 1, k); for l = 1:k w = 2 * pi * (1 : n-1) / n; x = 2 * log (abs( 1 - exp (-i*w))); y = log (periodogram (X(2:n,l))); x = center (x); y = center (y); for m = a:b D(m-a+1) = - x(1:m) * y(1:m) / sumsq (x(1:m)); endfor endfor d = mean (D); endfunction