Mercurial > hg > octave-lyh
view scripts/statistics/distributions/cauchy_rnd.m @ 16506:8a4960f2c7c3
gui: allow running files from the file browser
* files-dock-widget.cc(constructor): connect run_file_signal
(contextmenu_requested): add menu to run the selected file
(contextmenu_run): new slot for running the selected file
(run_file_signal): new signal
* files-dock-widget.h: new function contextmenu_run, new signal run_file_signal
author | Torsten <ttl@justmail.de> |
---|---|
date | Fri, 12 Apr 2013 22:20:39 +0200 |
parents | 57569a35765c |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} cauchy_rnd (@var{location}, @var{scale}) ## @deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, @var{r}) ## @deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, @var{r}, @var{c}, @dots{}) ## @deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, [@var{sz}]) ## Return a matrix of random samples from the Cauchy distribution with ## parameters @var{location} and @var{scale}. ## ## When called with a single size argument, return a square matrix with ## the dimension specified. When called with more than one scalar argument the ## first two arguments are taken as the number of rows and columns and any ## further arguments specify additional matrix dimensions. The size may also ## be specified with a vector of dimensions @var{sz}. ## ## If no size arguments are given then the result matrix is the common size of ## @var{location} and @var{scale}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Random deviates from the Cauchy distribution function rnd = cauchy_rnd (location, scale, varargin) if (nargin < 2) print_usage (); endif if (!isscalar (location) || !isscalar (scale)) [retval, location, scale] = common_size (location, scale); if (retval > 0) error ("cauchy_rnd: LOCATION and SCALE must be of common size or scalars"); endif endif if (iscomplex (location) || iscomplex (scale)) error ("cauchy_rnd: LOCATION and SCALE must not be complex"); endif if (nargin == 2) sz = size (location); elseif (nargin == 3) if (isscalar (varargin{1}) && varargin{1} >= 0) sz = [varargin{1}, varargin{1}]; elseif (isrow (varargin{1}) && all (varargin{1} >= 0)) sz = varargin{1}; else error ("cauchy_rnd: dimension vector must be row vector of non-negative integers"); endif elseif (nargin > 3) if (any (cellfun (@(x) (!isscalar (x) || x < 0), varargin))) error ("cauchy_rnd: dimensions must be non-negative integers"); endif sz = [varargin{:}]; endif if (!isscalar (location) && !isequal (size (location), sz)) error ("cauchy_rnd: LOCATION and SCALE must be scalar or of size SZ"); endif if (isa (location, "single") || isa (scale, "single")) cls = "single"; else cls = "double"; endif if (isscalar (location) && isscalar (scale)) if (!isinf (location) && (scale > 0) && (scale < Inf)) rnd = location - cot (pi * rand (sz, cls)) * scale; else rnd = NaN (sz, cls); endif else rnd = NaN (sz, cls); k = !isinf (location) & (scale > 0) & (scale < Inf); rnd(k) = location(k)(:) - cot (pi * rand (sum (k(:)), 1, cls)) .* scale(k)(:); endif endfunction %!assert (size (cauchy_rnd (1,2)), [1, 1]) %!assert (size (cauchy_rnd (ones (2,1), 2)), [2, 1]) %!assert (size (cauchy_rnd (ones (2,2), 2)), [2, 2]) %!assert (size (cauchy_rnd (1, 2*ones (2,1))), [2, 1]) %!assert (size (cauchy_rnd (1, 2*ones (2,2))), [2, 2]) %!assert (size (cauchy_rnd (1, 2, 3)), [3, 3]) %!assert (size (cauchy_rnd (1, 2, [4 1])), [4, 1]) %!assert (size (cauchy_rnd (1, 2, 4, 1)), [4, 1]) %% Test class of input preserved %!assert (class (cauchy_rnd (1, 2)), "double") %!assert (class (cauchy_rnd (single (1), 2)), "single") %!assert (class (cauchy_rnd (single ([1 1]), 2)), "single") %!assert (class (cauchy_rnd (1, single (2))), "single") %!assert (class (cauchy_rnd (1, single ([2 2]))), "single") %% Test input validation %!error cauchy_rnd () %!error cauchy_rnd (1) %!error cauchy_rnd (ones (3), ones (2)) %!error cauchy_rnd (ones (2), ones (3)) %!error cauchy_rnd (i, 2) %!error cauchy_rnd (2, i) %!error cauchy_rnd (1,2, -1) %!error cauchy_rnd (1,2, ones (2)) %!error cauchy_rnd (1,2, [2 -1 2]) %!error cauchy_rnd (1,2, 1, ones (2)) %!error cauchy_rnd (1,2, 1, -1) %!error cauchy_rnd (ones (2,2), 2, 3) %!error cauchy_rnd (ones (2,2), 2, [3, 2]) %!error cauchy_rnd (ones (2,2), 2, 2, 3)