Mercurial > hg > octave-lyh
view scripts/statistics/distributions/nbincdf.m @ 16506:8a4960f2c7c3
gui: allow running files from the file browser
* files-dock-widget.cc(constructor): connect run_file_signal
(contextmenu_requested): add menu to run the selected file
(contextmenu_run): new slot for running the selected file
(run_file_signal): new signal
* files-dock-widget.h: new function contextmenu_run, new signal run_file_signal
author | Torsten <ttl@justmail.de> |
---|---|
date | Fri, 12 Apr 2013 22:20:39 +0200 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} nbincdf (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the cumulative distribution function ## (CDF) at @var{x} of the negative binomial distribution with ## parameters @var{n} and @var{p}. ## ## When @var{n} is integer this is the Pascal distribution. When ## @var{n} is extended to real numbers this is the Polya distribution. ## ## The number of failures in a Bernoulli experiment with success ## probability @var{p} before the @var{n}-th success follows this ## distribution. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: CDF of the Pascal (negative binomial) distribution function cdf = nbincdf (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar (n) || !isscalar (p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("nbincdf: X, N, and P must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (n) || iscomplex (p)) error ("nbincdf: X, N, and P must not be complex"); endif if (isa (x, "single") || isa (n, "single") || isa (p, "single")) cdf = zeros (size (x), "single"); else cdf = zeros (size (x)); endif k = (isnan (x) | isnan (n) | (n < 1) | (n == Inf) | (p < 0) | (p > 1) | isnan (p)); cdf(k) = NaN; k = (x == Inf) & (n > 0) & (n < Inf) & (p >= 0) & (p <= 1); cdf(k) = 1; k = ((x >= 0) & (x < Inf) & (x == fix (x)) & (n > 0) & (n < Inf) & (p > 0) & (p <= 1)); if (isscalar (n) && isscalar (p)) cdf(k) = 1 - betainc (1-p, x(k)+1, n); else cdf(k) = 1 - betainc (1-p(k), x(k)+1, n(k)); endif endfunction %!shared x,y %! x = [-1 0 1 2 Inf]; %! y = [0 1/2 3/4 7/8 1]; %!assert (nbincdf (x, ones (1,5), 0.5*ones (1,5)), y) %!assert (nbincdf (x, 1, 0.5*ones (1,5)), y) %!assert (nbincdf (x, ones (1,5), 0.5), y) %!assert (nbincdf ([x(1:3) 0 x(5)], [0 1 NaN 1.5 Inf], 0.5), [NaN 1/2 NaN nbinpdf(0,1.5,0.5) NaN], eps) %!assert (nbincdf (x, 1, 0.5*[-1 NaN 4 1 1]), [NaN NaN NaN y(4:5)]) %!assert (nbincdf ([x(1:2) NaN x(4:5)], 1, 0.5), [y(1:2) NaN y(4:5)]) %% Test class of input preserved %!assert (nbincdf ([x, NaN], 1, 0.5), [y, NaN]) %!assert (nbincdf (single ([x, NaN]), 1, 0.5), single ([y, NaN])) %!assert (nbincdf ([x, NaN], single (1), 0.5), single ([y, NaN])) %!assert (nbincdf ([x, NaN], 1, single (0.5)), single ([y, NaN])) %% Test input validation %!error nbincdf () %!error nbincdf (1) %!error nbincdf (1,2) %!error nbincdf (1,2,3,4) %!error nbincdf (ones (3), ones (2), ones (2)) %!error nbincdf (ones (2), ones (3), ones (2)) %!error nbincdf (ones (2), ones (2), ones (3)) %!error nbincdf (i, 2, 2) %!error nbincdf (2, i, 2) %!error nbincdf (2, 2, i)