Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/chol.cc @ 5760:8d7162924bd3
[project @ 2006-04-14 04:01:37 by jwe]
author | jwe |
---|---|
date | Fri, 14 Apr 2006 04:01:40 +0000 |
parents | ebe5d7d15522 |
children | 080c08b192d8 |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxCHOL.h" #include "dbleCHOL.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (chol, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} chol (@var{a})\n\ @cindex Cholesky factorization\n\ Compute the Cholesky factor, @var{r}, of the symmetric positive definite\n\ matrix @var{a}, where\n\ @iftex\n\ @tex\n\ $ R^T R = A $.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ r' * r = a.\n\ @end example\n\ @end ifinfo\n\ @seealso{cholinv, chol2inv}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1 || nargout > 2) { print_usage ("chol"); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); int arg_is_empty = empty_arg ("chol", nr, nc); if (arg_is_empty < 0) return retval; if (arg_is_empty > 0) return octave_value (Matrix ()); if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { octave_idx_type info; CHOL fact (m, info); if (nargout == 2 || info == 0) { retval(1) = static_cast<double> (info); retval(0) = fact.chol_matrix (); } else error ("chol: matrix not positive definite"); } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { octave_idx_type info; ComplexCHOL fact (m, info); if (nargout == 2 || info == 0) { retval(1) = static_cast<double> (info); retval(0) = fact.chol_matrix (); } else error ("chol: matrix not positive definite"); } } else { gripe_wrong_type_arg ("chol", arg); } return retval; } DEFUN_DLD (cholinv, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} cholinv (@var{a})\n\ Use the Cholesky factorization to compute the inverse of the\n\ symmetric positive definite matrix @var{a}.\n\ @seealso{chol, chol2inv}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 1) { octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else { if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { octave_idx_type info; CHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { octave_idx_type info; ComplexCHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else gripe_wrong_type_arg ("chol", arg); } } else print_usage ("chol"); return retval; } DEFUN_DLD (chol2inv, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} chol2inv (@var{u})\n\ Invert a symmetric, positive definite square matrix from its Cholesky\n\ decomposition, @var{u}. Note that @var{u} should be an upper-triangular\n\ matrix with positive diagonal elements. @code{chol2inv (@var{u})}\n\ provides @code{inv (@var{u}'*@var{u})} but it is much faster than\n\ using @code{inv}.\n\ @seealso{chol, cholinv}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 1) { octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else { if (arg.is_real_type ()) { Matrix r = arg.matrix_value (); if (! error_state) retval = chol2inv (r); } else if (arg.is_complex_type ()) { ComplexMatrix r = arg.complex_matrix_value (); if (! error_state) retval = chol2inv (r); } else gripe_wrong_type_arg ("chol2inv", arg); } } else print_usage ("chol2inv"); return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */