Mercurial > hg > octave-lyh
view scripts/statistics/distributions/lognpdf.m @ 17425:9289bb0ff4dd
io.tst: fix for-loop upper bound after change 3856298f1ff8
author | Andreas Weber <andy.weber.aw@gmail.com> |
---|---|
date | Sat, 14 Sep 2013 11:19:25 +0200 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} lognpdf (@var{x}) ## @deftypefnx {Function File} {} lognpdf (@var{x}, @var{mu}, @var{sigma}) ## For each element of @var{x}, compute the probability density function ## (PDF) at @var{x} of the lognormal distribution with parameters ## @var{mu} and @var{sigma}. If a random variable follows this distribution, ## its logarithm is normally distributed with mean @var{mu} ## and standard deviation @var{sigma}. ## ## Default values are @var{mu} = 1, @var{sigma} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: PDF of the log normal distribution function pdf = lognpdf (x, mu = 0, sigma = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (!isscalar (mu) || !isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("lognpdf: X, MU, and SIGMA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("lognpdf: X, MU, and SIGMA must not be complex"); endif if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) pdf = zeros (size (x), "single"); else pdf = zeros (size (x)); endif k = isnan (x) | !(sigma > 0) | !(sigma < Inf); pdf(k) = NaN; k = (x > 0) & (x < Inf) & (sigma > 0) & (sigma < Inf); if (isscalar (mu) && isscalar (sigma)) pdf(k) = normpdf (log (x(k)), mu, sigma) ./ x(k); else pdf(k) = normpdf (log (x(k)), mu(k), sigma(k)) ./ x(k); endif endfunction %!shared x,y %! x = [-1 0 e Inf]; %! y = [0, 0, 1/(e*sqrt(2*pi)) * exp(-1/2), 0]; %!assert (lognpdf (x, zeros (1,4), ones (1,4)), y, eps) %!assert (lognpdf (x, 0, ones (1,4)), y, eps) %!assert (lognpdf (x, zeros (1,4), 1), y, eps) %!assert (lognpdf (x, [0 1 NaN 0], 1), [0 0 NaN y(4)], eps) %!assert (lognpdf (x, 0, [0 NaN Inf 1]), [NaN NaN NaN y(4)], eps) %!assert (lognpdf ([x, NaN], 0, 1), [y, NaN], eps) %% Test class of input preserved %!assert (lognpdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single")) %!assert (lognpdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single")) %!assert (lognpdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single")) %% Test input validation %!error lognpdf () %!error lognpdf (1,2) %!error lognpdf (1,2,3,4) %!error lognpdf (ones (3), ones (2), ones (2)) %!error lognpdf (ones (2), ones (3), ones (2)) %!error lognpdf (ones (2), ones (2), ones (3)) %!error lognpdf (i, 2, 2) %!error lognpdf (2, i, 2) %!error lognpdf (2, 2, i)