Mercurial > hg > octave-lyh
view scripts/control/base/dlqr.m @ 4422:92be67bc9301
[project @ 2003-06-04 17:43:15 by jwe]
author | jwe |
---|---|
date | Wed, 04 Jun 2003 17:43:15 +0000 |
parents | 22bd65326ec1 |
children | c76a32c6f90c |
line wrap: on
line source
## Copyright (C) 1993, 1994, 1995 Auburn University ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by the ## Free Software Foundation; either version 2, or (at your option) any ## later version. ## ## Octave is distributed in the hope that it will be useful, but WITHOUT ## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ## for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, write to the Free ## Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} dlqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z}) ## Construct the linear quadratic regulator for the discrete time system ## @iftex ## @tex ## $$ ## x_{k+1} = A x_k + B u_k ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## x[k+1] = A x[k] + B u[k] ## @end example ## ## @end ifinfo ## to minimize the cost functional ## @iftex ## @tex ## $$ ## J = \sum x^T Q x + u^T R u ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## J = Sum (x' Q x + u' R u) ## @end example ## @end ifinfo ## ## @noindent ## @var{z} omitted or ## @iftex ## @tex ## $$ ## J = \sum x^T Q x + u^T R u + 2 x^T Z u ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## J = Sum (x' Q x + u' R u + 2 x' Z u) ## @end example ## ## @end ifinfo ## @var{z} included. ## ## The following values are returned: ## ## @table @var ## @item k ## The state feedback gain, ## @iftex ## @tex ## $(A - B K)$ ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{b}@var{k}) ## @end ifinfo ## is stable. ## ## @item p ## The solution of algebraic Riccati equation. ## ## @item e ## The closed loop poles of ## @iftex ## @tex ## $(A - B K)$. ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{b}@var{k}). ## @end ifinfo ## @end table ## @end deftypefn ## Author: A. S. Hodel <a.s.hodel@eng.auburn.edu> ## Created: August 1993 ## Converted to discrete time by R. B. Tenison ## (btenison@eng.auburn.edu) October 1993 ## Modified by Gabriele Pannocchia <pannocchia@ing.unipi.it> ## July 2000 function [k, p, e] = dlqr (a, b, q, r, s) if (nargin != 4 && nargin != 5) error ("dlqr: invalid number of arguments"); endif ## Check a. if ((n = issquare (a)) == 0) error ("dlqr: requires 1st parameter(a) to be square"); endif ## Check b. [n1, m] = size (b); if (n1 != n) error ("dlqr: a,b not conformal"); endif ## Check q. if ((n1 = issquare (q)) == 0 || n1 != n) error ("dlqr: q must be square and conformal with a"); endif ## Check r. if((m1 = issquare(r)) == 0 || m1 != m) error ("dlqr: r must be square and conformal with column dimension of b"); endif ## Check if n is there. if (nargin == 5) [n1, m1] = size (s); if (n1 != n || m1 != m) error ("dlqr: z must be identically dimensioned with b"); endif ## Incorporate cross term into a and q. ao = a - (b/r)*s'; qo = q - (s/r)*s'; else s = zeros (n, m); ao = a; qo = q; endif ## Check that q, (r) are symmetric, positive (semi)definite if (issymmetric (q) && issymmetric (r) && all (eig (q) >= 0) && all (eig (r) > 0)) p = dare (ao, b, qo, r); k = (r+b'*p*b)\(b'*p*a + s'); e = eig (a - b*k); else error ("dlqr: q (r) must be symmetric positive (semi) definite"); endif endfunction