Mercurial > hg > octave-lyh
view liboctave/CNDArray.cc @ 7922:935be827eaf8
error for NaN values in & and | expressions
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 11 Jul 2008 14:56:30 -0400 |
parents | 82be108cc558 |
children | 25bc2d31e1bf |
line wrap: on
line source
// N-D Array manipulations. /* Copyright (C) 1996, 1997, 2003, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include <cfloat> #include <vector> #include "Array-util.h" #include "CNDArray.h" #include "mx-base.h" #include "f77-fcn.h" #include "functor.h" #include "lo-ieee.h" #include "lo-mappers.h" #if defined (HAVE_FFTW3) #include "oct-fftw.h" #else extern "C" { // Note that the original complex fft routines were not written for // double complex arguments. They have been modified by adding an // implicit double precision (a-h,o-z) statement at the beginning of // each subroutine. F77_RET_T F77_FUNC (zffti, ZFFTI) (const octave_idx_type&, Complex*); F77_RET_T F77_FUNC (zfftf, ZFFTF) (const octave_idx_type&, Complex*, Complex*); F77_RET_T F77_FUNC (zfftb, ZFFTB) (const octave_idx_type&, Complex*, Complex*); } #endif #if defined (HAVE_FFTW3) ComplexNDArray ComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::fft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } ComplexNDArray ComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); octave_idx_type stride = 1; octave_idx_type n = dv(dim); for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / dv (dim); howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / dv (dim) / stride); octave_idx_type dist = (stride == 1 ? n : 1); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); // Need to be careful here about the distance between fft's for (octave_idx_type k = 0; k < nloop; k++) octave_fftw::ifft (in + k * stride * n, out + k * stride * n, n, howmany, stride, dist); return retval; } ComplexNDArray ComplexNDArray::fourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return ComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const Complex *in = fortran_vec (); ComplexNDArray retval (dv); Complex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::fftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } ComplexNDArray ComplexNDArray::ifourier2d (void) const { dim_vector dv = dims(); if (dv.length () < 2) return ComplexNDArray (); dim_vector dv2(dv(0), dv(1)); const Complex *in = fortran_vec (); ComplexNDArray retval (dv); Complex *out = retval.fortran_vec (); octave_idx_type howmany = numel() / dv(0) / dv(1); octave_idx_type dist = dv(0) * dv(1); for (octave_idx_type i=0; i < howmany; i++) octave_fftw::ifftNd (in + i*dist, out + i*dist, 2, dv2); return retval; } ComplexNDArray ComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); octave_fftw::fftNd (in, out, rank, dv); return retval; } ComplexNDArray ComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); const Complex *in (fortran_vec ()); ComplexNDArray retval (dv); Complex *out (retval.fortran_vec ()); octave_fftw::ifftNd (in, out, rank, dv); return retval; } #else ComplexNDArray ComplexNDArray::fourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); ComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (zfftf, ZFFTF) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i]; } } return retval; } ComplexNDArray ComplexNDArray::ifourier (int dim) const { dim_vector dv = dims (); if (dim > dv.length () || dim < 0) return ComplexNDArray (); ComplexNDArray retval (dv); octave_idx_type npts = dv(dim); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); OCTAVE_LOCAL_BUFFER (Complex, tmp, npts); octave_idx_type stride = 1; for (int i = 0; i < dim; i++) stride *= dv(i); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type i = 0; i < npts; i++) tmp[i] = elem((i + k*npts)*stride + j*dist); F77_FUNC (zfftb, ZFFTB) (npts, tmp, pwsave); for (octave_idx_type i = 0; i < npts; i++) retval ((i + k*npts)*stride + j*dist) = tmp[i] / static_cast<double> (npts); } } return retval; } ComplexNDArray ComplexNDArray::fourier2d (void) const { dim_vector dv = dims (); dim_vector dv2 (dv(0), dv(1)); int rank = 2; ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (zfftf, ZFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv2(i); } return retval; } ComplexNDArray ComplexNDArray::ifourier2d (void) const { dim_vector dv = dims(); dim_vector dv2 (dv(0), dv(1)); int rank = 2; ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv2(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (zfftb, ZFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<double> (npts); } } stride *= dv2(i); } return retval; } ComplexNDArray ComplexNDArray::fourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (zfftf, ZFFTF) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l]; } } stride *= dv(i); } return retval; } ComplexNDArray ComplexNDArray::ifourierNd (void) const { dim_vector dv = dims (); int rank = dv.length (); ComplexNDArray retval (*this); octave_idx_type stride = 1; for (int i = 0; i < rank; i++) { octave_idx_type npts = dv(i); octave_idx_type nn = 4*npts+15; Array<Complex> wsave (nn); Complex *pwsave = wsave.fortran_vec (); Array<Complex> row (npts); Complex *prow = row.fortran_vec (); octave_idx_type howmany = numel () / npts; howmany = (stride == 1 ? howmany : (howmany > stride ? stride : howmany)); octave_idx_type nloop = (stride == 1 ? 1 : numel () / npts / stride); octave_idx_type dist = (stride == 1 ? npts : 1); F77_FUNC (zffti, ZFFTI) (npts, pwsave); for (octave_idx_type k = 0; k < nloop; k++) { for (octave_idx_type j = 0; j < howmany; j++) { OCTAVE_QUIT; for (octave_idx_type l = 0; l < npts; l++) prow[l] = retval ((l + k*npts)*stride + j*dist); F77_FUNC (zfftb, ZFFTB) (npts, prow, pwsave); for (octave_idx_type l = 0; l < npts; l++) retval ((l + k*npts)*stride + j*dist) = prow[l] / static_cast<double> (npts); } } stride *= dv(i); } return retval; } #endif // unary operations boolNDArray ComplexNDArray::operator ! (void) const { boolNDArray b (dims ()); for (octave_idx_type i = 0; i < length (); i++) b.elem (i) = elem (i) == 0.0; return b; } // FIXME -- this is not quite the right thing. bool ComplexNDArray::any_element_is_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = elem (i); if (xisnan (val)) return true; } return false; } bool ComplexNDArray::any_element_is_inf_or_nan (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = elem (i); if (xisinf (val) || xisnan (val)) return true; } return false; } // Return true if no elements have imaginary components. bool ComplexNDArray::all_elements_are_real (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { double ip = std::imag (elem (i)); if (ip != 0.0 || lo_ieee_signbit (ip)) return false; } return true; } // Return nonzero if any element of CM has a non-integer real or // imaginary part. Also extract the largest and smallest (real or // imaginary) values and return them in MAX_VAL and MIN_VAL. bool ComplexNDArray::all_integers (double& max_val, double& min_val) const { octave_idx_type nel = nelem (); if (nel > 0) { Complex val = elem (0); double r_val = std::real (val); double i_val = std::imag (val); max_val = r_val; min_val = r_val; if (i_val > max_val) max_val = i_val; if (i_val < max_val) min_val = i_val; } else return false; for (octave_idx_type i = 0; i < nel; i++) { Complex val = elem (i); double r_val = std::real (val); double i_val = std::imag (val); if (r_val > max_val) max_val = r_val; if (i_val > max_val) max_val = i_val; if (r_val < min_val) min_val = r_val; if (i_val < min_val) min_val = i_val; if (D_NINT (r_val) != r_val || D_NINT (i_val) != i_val) return false; } return true; } bool ComplexNDArray::too_large_for_float (void) const { octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) { Complex val = elem (i); double r_val = std::real (val); double i_val = std::imag (val); if ((! (xisnan (r_val) || xisinf (r_val)) && fabs (r_val) > FLT_MAX) || (! (xisnan (i_val) || xisinf (i_val)) && fabs (i_val) > FLT_MAX)) return true; } return false; } boolNDArray ComplexNDArray::all (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ALL_EVAL (elem (iter_idx) == Complex (0, 0)), true); } boolNDArray ComplexNDArray::any (int dim) const { MX_ND_ANY_ALL_REDUCTION (MX_ND_ANY_EVAL (elem (iter_idx) != Complex (0, 0) && ! (lo_ieee_isnan (std::real (elem (iter_idx))) || lo_ieee_isnan (std::imag (elem (iter_idx))))), false); } ComplexNDArray ComplexNDArray::cumprod (int dim) const { MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (1, 0), *); } ComplexNDArray ComplexNDArray::cumsum (int dim) const { MX_ND_CUMULATIVE_OP (ComplexNDArray, Complex, Complex (0, 0), +); } ComplexNDArray ComplexNDArray::prod (int dim) const { MX_ND_COMPLEX_OP_REDUCTION (*= elem (iter_idx), Complex (1, 0)); } ComplexNDArray ComplexNDArray::sumsq (int dim) const { MX_ND_COMPLEX_OP_REDUCTION (+= std::imag (elem (iter_idx)) ? elem (iter_idx) * conj (elem (iter_idx)) : std::pow (elem (iter_idx), 2), Complex (0, 0)); } ComplexNDArray ComplexNDArray::sum (int dim) const { MX_ND_COMPLEX_OP_REDUCTION (+= elem (iter_idx), Complex (0, 0)); } ComplexNDArray ComplexNDArray::concat (const ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { if (rb.numel () > 0) insert (rb, ra_idx); return *this; } ComplexNDArray ComplexNDArray::concat (const NDArray& rb, const Array<octave_idx_type>& ra_idx) { ComplexNDArray tmp (rb); if (rb.numel () > 0) insert (tmp, ra_idx); return *this; } ComplexNDArray concat (NDArray& ra, ComplexNDArray& rb, const Array<octave_idx_type>& ra_idx) { ComplexNDArray retval (ra); if (rb.numel () > 0) retval.insert (rb, ra_idx); return retval; } static const Complex Complex_NaN_result (octave_NaN, octave_NaN); ComplexNDArray ComplexNDArray::max (int dim) const { ArrayN<octave_idx_type> dummy_idx; return max (dummy_idx, dim); } ComplexNDArray ComplexNDArray::max (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return ComplexNDArray (); dr(dim) = 1; ComplexNDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; Complex tmp_max; double abs_max = octave_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_max = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_max)) { abs_max = std::abs(tmp_max); break; } } for (octave_idx_type j = idx_j+1; j < x_len; j++) { Complex tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; double abs_tmp = std::abs (tmp); if (abs_tmp > abs_max) { idx_j = j; tmp_max = tmp; abs_max = abs_tmp; } } if (xisnan (tmp_max)) { result.elem (i) = Complex_NaN_result; idx_arg.elem (i) = 0; } else { result.elem (i) = tmp_max; idx_arg.elem (i) = idx_j; } } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } ComplexNDArray ComplexNDArray::min (int dim) const { ArrayN<octave_idx_type> dummy_idx; return min (dummy_idx, dim); } ComplexNDArray ComplexNDArray::min (ArrayN<octave_idx_type>& idx_arg, int dim) const { dim_vector dv = dims (); dim_vector dr = dims (); if (dv.numel () == 0 || dim > dv.length () || dim < 0) return ComplexNDArray (); dr(dim) = 1; ComplexNDArray result (dr); idx_arg.resize (dr); octave_idx_type x_stride = 1; octave_idx_type x_len = dv(dim); for (int i = 0; i < dim; i++) x_stride *= dv(i); for (octave_idx_type i = 0; i < dr.numel (); i++) { octave_idx_type x_offset; if (x_stride == 1) x_offset = i * x_len; else { octave_idx_type x_offset2 = 0; x_offset = i; while (x_offset >= x_stride) { x_offset -= x_stride; x_offset2++; } x_offset += x_offset2 * x_stride * x_len; } octave_idx_type idx_j; Complex tmp_min; double abs_min = octave_NaN; for (idx_j = 0; idx_j < x_len; idx_j++) { tmp_min = elem (idx_j * x_stride + x_offset); if (! xisnan (tmp_min)) { abs_min = std::abs(tmp_min); break; } } for (octave_idx_type j = idx_j+1; j < x_len; j++) { Complex tmp = elem (j * x_stride + x_offset); if (xisnan (tmp)) continue; double abs_tmp = std::abs (tmp); if (abs_tmp < abs_min) { idx_j = j; tmp_min = tmp; abs_min = abs_tmp; } } if (xisnan (tmp_min)) { result.elem (i) = Complex_NaN_result; idx_arg.elem (i) = 0; } else { result.elem (i) = tmp_min; idx_arg.elem (i) = idx_j; } } result.chop_trailing_singletons (); idx_arg.chop_trailing_singletons (); return result; } NDArray ComplexNDArray::abs (void) const { NDArray retval (dims ()); octave_idx_type nel = nelem (); for (octave_idx_type i = 0; i < nel; i++) retval(i) = std::abs (elem (i)); return retval; } ComplexNDArray& ComplexNDArray::insert (const NDArray& a, octave_idx_type r, octave_idx_type c) { dim_vector a_dv = a.dims (); int n = a_dv.length (); if (n == dimensions.length ()) { Array<octave_idx_type> a_ra_idx (a_dv.length (), 0); a_ra_idx.elem (0) = r; a_ra_idx.elem (1) = c; for (int i = 0; i < n; i++) { if (a_ra_idx (i) < 0 || (a_ra_idx (i) + a_dv (i)) > dimensions (i)) { (*current_liboctave_error_handler) ("Array<T>::insert: range error for insert"); return *this; } } a_ra_idx.elem (0) = 0; a_ra_idx.elem (1) = 0; octave_idx_type n_elt = a.numel (); // IS make_unique () NECCESSARY HERE?? for (octave_idx_type i = 0; i < n_elt; i++) { Array<octave_idx_type> ra_idx = a_ra_idx; ra_idx.elem (0) = a_ra_idx (0) + r; ra_idx.elem (1) = a_ra_idx (1) + c; elem (ra_idx) = a.elem (a_ra_idx); increment_index (a_ra_idx, a_dv); } } else (*current_liboctave_error_handler) ("Array<T>::insert: invalid indexing operation"); return *this; } ComplexNDArray& ComplexNDArray::insert (const ComplexNDArray& a, octave_idx_type r, octave_idx_type c) { Array<Complex>::insert (a, r, c); return *this; } ComplexNDArray& ComplexNDArray::insert (const ComplexNDArray& a, const Array<octave_idx_type>& ra_idx) { Array<Complex>::insert (a, ra_idx); return *this; } ComplexMatrix ComplexNDArray::matrix_value (void) const { ComplexMatrix retval; int nd = ndims (); switch (nd) { case 1: retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), 1)); break; case 2: retval = ComplexMatrix (Array2<Complex> (*this, dimensions(0), dimensions(1))); break; default: (*current_liboctave_error_handler) ("invalid conversion of ComplexNDArray to ComplexMatrix"); break; } return retval; } void ComplexNDArray::increment_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions, int start_dimension) { ::increment_index (ra_idx, dimensions, start_dimension); } octave_idx_type ComplexNDArray::compute_index (Array<octave_idx_type>& ra_idx, const dim_vector& dimensions) { return ::compute_index (ra_idx, dimensions); } ComplexNDArray ComplexNDArray::diag (octave_idx_type k) const { return MArrayN<Complex>::diag (k); } NDArray ComplexNDArray::map (dmapper fcn) const { return MArrayN<Complex>::map<double> (func_ptr (fcn)); } ComplexNDArray ComplexNDArray::map (cmapper fcn) const { return MArrayN<Complex>::map<Complex> (func_ptr (fcn)); } boolNDArray ComplexNDArray::map (bmapper fcn) const { return MArrayN<Complex>::map<bool> (func_ptr (fcn)); } // This contains no information on the array structure !!! std::ostream& operator << (std::ostream& os, const ComplexNDArray& a) { octave_idx_type nel = a.nelem (); for (octave_idx_type i = 0; i < nel; i++) { os << " "; octave_write_complex (os, a.elem (i)); os << "\n"; } return os; } std::istream& operator >> (std::istream& is, ComplexNDArray& a) { octave_idx_type nel = a.nelem (); if (nel < 1 ) is.clear (std::ios::badbit); else { Complex tmp; for (octave_idx_type i = 0; i < nel; i++) { tmp = octave_read_complex (is); if (is) a.elem (i) = tmp; else goto done; } } done: return is; } // FIXME -- it would be nice to share code among the min/max // functions below. #define EMPTY_RETURN_CHECK(T) \ if (nel == 0) \ return T (dv); ComplexNDArray min (const Complex& c, const ComplexNDArray& m) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (ComplexNDArray); ComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (c, m (i)); } return result; } ComplexNDArray min (const ComplexNDArray& m, const Complex& c) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (ComplexNDArray); ComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (c, m (i)); } return result; } ComplexNDArray min (const ComplexNDArray& a, const ComplexNDArray& b) { dim_vector dv = a.dims (); int nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg min expecting args of same size"); return ComplexNDArray (); } EMPTY_RETURN_CHECK (ComplexNDArray); ComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmin (a (i), b (i)); } return result; } ComplexNDArray max (const Complex& c, const ComplexNDArray& m) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (ComplexNDArray); ComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (c, m (i)); } return result; } ComplexNDArray max (const ComplexNDArray& m, const Complex& c) { dim_vector dv = m.dims (); int nel = dv.numel (); EMPTY_RETURN_CHECK (ComplexNDArray); ComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (c, m (i)); } return result; } ComplexNDArray max (const ComplexNDArray& a, const ComplexNDArray& b) { dim_vector dv = a.dims (); int nel = dv.numel (); if (dv != b.dims ()) { (*current_liboctave_error_handler) ("two-arg max expecting args of same size"); return ComplexNDArray (); } EMPTY_RETURN_CHECK (ComplexNDArray); ComplexNDArray result (dv); for (int i = 0; i < nel; i++) { OCTAVE_QUIT; result (i) = xmax (a (i), b (i)); } return result; } NDS_CMP_OPS(ComplexNDArray, std::real, Complex, std::real) NDS_BOOL_OPS(ComplexNDArray, Complex, 0.0) SND_CMP_OPS(Complex, std::real, ComplexNDArray, std::real) SND_BOOL_OPS(Complex, ComplexNDArray, 0.0) NDND_CMP_OPS(ComplexNDArray, std::real, ComplexNDArray, std::real) NDND_BOOL_OPS(ComplexNDArray, ComplexNDArray, 0.0) /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */